| 1 |
% |
| 2 |
% THIS IS NOT A FUNCTION ! |
| 3 |
% |
| 4 |
% Plot time series of all variables in different ways |
| 5 |
% Outputs recording possible |
| 6 |
% |
| 7 |
|
| 8 |
clear |
| 9 |
global sla netcdf_domain |
| 10 |
pv_checkpath |
| 11 |
|
| 12 |
% Path and extension to find files: |
| 13 |
pathname = strcat('netcdf-files',sla); |
| 14 |
%pathname = strcat('netcdf-files-twice-daily',sla); |
| 15 |
%pathname = strcat('netcdf-files-daily',sla); |
| 16 |
ext = 'nc'; |
| 17 |
netcdf_domain = 'western_north_atlantic'; |
| 18 |
|
| 19 |
% Date series: |
| 20 |
ID = datenum(2000,12,31,12,0,0); % Start date |
| 21 |
ID = datenum(2000,12,31,0,0,0); % Start date |
| 22 |
ID = datenum(2001,1,1,12,0,0); % Start date |
| 23 |
ID = datenum(2001,4,1,0,0,0); % Start date |
| 24 |
%IDend = datenum(2001,2,26,12,0,0); % End date |
| 25 |
IDend = datenum(2001,7,4,0,0,0); % End date |
| 26 |
|
| 27 |
dt = datenum(0,0,1,0,0,0); % Time step between input: 1 day |
| 28 |
%dt = datenum(0,0,2,0,0,0); % Time step between input: 2 days |
| 29 |
%dt = datenum(0,0,7,0,0,0); % Time step between input: 1 week |
| 30 |
%dt = datenum(0,0,0,12,0,0); % Time step between input: 12 hours |
| 31 |
IDend = ID + 1*dt; % |
| 32 |
nt = (IDend-ID)/dt; |
| 33 |
|
| 34 |
% Create TIME table: |
| 35 |
for it = 1 : nt |
| 36 |
ID = ID + dt; |
| 37 |
snapshot = datestr(ID,'yyyymmddHHMM'); % For twice-daily data |
| 38 |
% snapshot = datestr(ID,'yyyymmdd'); % For daily data |
| 39 |
TIME(it,:) = snapshot; |
| 40 |
end %for it |
| 41 |
|
| 42 |
|
| 43 |
% Some settings |
| 44 |
iso = 25.25; % Which sigma-theta surface ? |
| 45 |
getiso = 0; % We do not compute the isoST by default |
| 46 |
outimg = 'img_tmp'; % Output directory |
| 47 |
%outimg = 'img_tmp2'; % Output directory |
| 48 |
%outimg = 'img_tmp3'; % Output directory |
| 49 |
prtimg = 0; % Do we record figures as jpg files ? |
| 50 |
|
| 51 |
% Plot modules available: |
| 52 |
sub = get_plotlist('eg_view_Timeserie','.'); |
| 53 |
disp('Available plots:') |
| 54 |
sub = get_plotlistdef('eg_view_Timeserie','.'); |
| 55 |
disp('Set the variable <pl> in view_Timeserie.m with wanted plots') |
| 56 |
|
| 57 |
% Selected plots list: |
| 58 |
pl = [7]; %getiso=1; |
| 59 |
|
| 60 |
% Verif plots: |
| 61 |
disp(char(2));disp('You have choosed to plot:') |
| 62 |
for i = 1 : length(pl) |
| 63 |
disp(strcat(num2str(pl(i)),' -> ', sub(pl(i)).description ) ) |
| 64 |
end |
| 65 |
s = input(' Are you sure ([y]/n) ?','s'); |
| 66 |
if ~isempty(s) & s == 'n' |
| 67 |
return |
| 68 |
end |
| 69 |
|
| 70 |
% To find a specific date |
| 71 |
%find(str2num(TIME)==200103300000),break |
| 72 |
|
| 73 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 74 |
% Video loop: |
| 75 |
for it = 1 : nt |
| 76 |
snapshot = TIME(it,:); |
| 77 |
%titf='.section_32N';if ~exist(strcat(outimg,sla,'PV.',snapshot,titf,'.jpg'),'file') |
| 78 |
|
| 79 |
%%%%%%%%%%%%%%%% |
| 80 |
% NETCDF files name: |
| 81 |
filPV = 'PV'; |
| 82 |
filST = 'SIGMATHETA'; |
| 83 |
filT = 'THETA'; |
| 84 |
filTx = 'TAUX'; |
| 85 |
filTy = 'TAUY'; |
| 86 |
filJFz = 'JFz'; |
| 87 |
filJBz = 'JBz'; |
| 88 |
filQnet = 'TFLUX'; |
| 89 |
filQEk = 'QEk'; |
| 90 |
%filMLD = 'KPPmld'; |
| 91 |
filMLD = 'MLD'; |
| 92 |
filOx = 'OMEGAX'; |
| 93 |
filOy = 'OMEGAY'; |
| 94 |
filZET = 'ZETA'; |
| 95 |
filEKL = 'EKL'; |
| 96 |
|
| 97 |
|
| 98 |
% Load fields: |
| 99 |
disp('load fields...') |
| 100 |
% (I keep proper axis for each variables in case of one day they would be different) |
| 101 |
ferfile = strcat(pathname,sla,snapshot,sla,filPV,'.',netcdf_domain,'.',ext); |
| 102 |
ncQ = netcdf(ferfile,'nowrite'); |
| 103 |
[Qlon Qlat Qdpt] = coordfromnc(ncQ); |
| 104 |
Q = ncQ{4}(:,:,:); clear ncQ ferfile |
| 105 |
[nz ny nx] = size(Q); |
| 106 |
%Qdpt = -Qdpt; |
| 107 |
|
| 108 |
ferfile = strcat(pathname,sla,snapshot,sla,filZET,'.',netcdf_domain,'.',ext); |
| 109 |
ncZET = netcdf(ferfile,'nowrite'); |
| 110 |
[ZETAlon ZETAlat ZETAdpt] = coordfromnc(ncZET); |
| 111 |
ZETA = ncZET{4}(:,:,:); clear ncZET ferfile |
| 112 |
% Move ZETA on the same grid as Q: |
| 113 |
ZETA = ( ZETA(:,:,2:nx-1) + ZETA(:,:,1:nx-2) )./2; |
| 114 |
ZETA = ( ZETA(:,2:ny-1,:) + ZETA(:,1:ny-2,:) )./2; |
| 115 |
ZETAlon = ( ZETAlon(2:nx-1) + ZETAlon(1:nx-2) )./2; |
| 116 |
ZETAlat = ( ZETAlat(2:ny-1) + ZETAlat(1:ny-2) )./2; |
| 117 |
|
| 118 |
ferfile = strcat(pathname,sla,snapshot,sla,filOx,'.',netcdf_domain,'.',ext); |
| 119 |
ncOX = netcdf(ferfile,'nowrite'); |
| 120 |
[OXlon OXlat OXdpt] = coordfromnc(ncOX); |
| 121 |
OX = ncOX{4}(:,:,:); clear ncOX ferfile |
| 122 |
% Move OMEGAx on the same grid as Q: |
| 123 |
OX = ( OX(:,2:ny-1,:) + OX(:,1:ny-2,:) )./2; |
| 124 |
OX = ( OX(2:nz-1,:,:) + OX(1:nz-2,:,:) )./2; |
| 125 |
OXlat = ( OXlat(2:ny-1) + OXlat(1:ny-2) )./2; |
| 126 |
OXdpt = ( OXdpt(2:nz-1) + OXdpt(1:nz-2) )./2; |
| 127 |
|
| 128 |
ferfile = strcat(pathname,sla,snapshot,sla,filOy,'.',netcdf_domain,'.',ext); |
| 129 |
ncOY = netcdf(ferfile,'nowrite'); |
| 130 |
[OYlon OYlat OYdpt] = coordfromnc(ncOY); |
| 131 |
OY = ncOY{4}(:,:,:); clear ncOY ferfile |
| 132 |
% Move OMEGAy on the same grid as Q: |
| 133 |
OY = ( OY(2:nz-1,:,:) + OY(1:nz-2,:,:) )./2; |
| 134 |
OY = ( OY(:,:,2:nx-1) + OY(:,:,1:nx-2) )./2; |
| 135 |
OYdpt = ( OYdpt(2:nz-1) + OYdpt(1:nz-2) )./2; |
| 136 |
OYlon = ( OYlon(2:nx-1) + OYlon(1:nx-2) )./2; |
| 137 |
|
| 138 |
|
| 139 |
ferfile = strcat(pathname,sla,snapshot,sla,filST,'.',netcdf_domain,'.',ext); |
| 140 |
ncST = netcdf(ferfile,'nowrite'); |
| 141 |
[STlon STlat STdpt] = coordfromnc(ncST); |
| 142 |
ST = ncST{4}(:,:,:); clear ncST ferfile |
| 143 |
|
| 144 |
ferfile = strcat(pathname,sla,snapshot,sla,filT,'.',netcdf_domain,'.',ext); |
| 145 |
ncT = netcdf(ferfile,'nowrite'); |
| 146 |
[Tlon Tlat Tdpt] = coordfromnc(ncT); |
| 147 |
T = ncT{4}(:,:,:); clear ncT ferfile |
| 148 |
|
| 149 |
ferfile = strcat(pathname,sla,snapshot,sla,filTx,'.',netcdf_domain,'.',ext); |
| 150 |
ncTx = netcdf(ferfile,'nowrite'); |
| 151 |
[Txlon Txlat Txdpt] = coordfromnc(ncTx); |
| 152 |
Tx = ncTx{4}(1,:,:); clear ncTx ferfile |
| 153 |
ferfile = strcat(pathname,sla,snapshot,sla,filTy,'.',netcdf_domain,'.',ext); |
| 154 |
ncTy = netcdf(ferfile,'nowrite'); |
| 155 |
[Tylon Tylat Tydpt] = coordfromnc(ncTy); |
| 156 |
Ty = ncTy{4}(1,:,:); clear ncTy ferfile |
| 157 |
|
| 158 |
ferfile = strcat(pathname,sla,snapshot,sla,filJFz,'.',netcdf_domain,'.',ext); |
| 159 |
ncJFz = netcdf(ferfile,'nowrite'); |
| 160 |
[JFzlon JFzlat JFzdpt] = coordfromnc(ncJFz); |
| 161 |
JFz = ncJFz{4}(1,:,:); |
| 162 |
|
| 163 |
ferfile = strcat(pathname,sla,snapshot,sla,filJBz,'.',netcdf_domain,'.',ext); |
| 164 |
ncJBz = netcdf(ferfile,'nowrite'); |
| 165 |
[JBzlon JBzlat JBzdpt] = coordfromnc(ncJBz); |
| 166 |
JBz = ncJBz{4}(1,:,:); |
| 167 |
|
| 168 |
ferfile = strcat(pathname,sla,snapshot,sla,filQnet,'.',netcdf_domain,'.',ext); |
| 169 |
ncQnet = netcdf(ferfile,'nowrite'); |
| 170 |
[Qnetlon Qnetlat Qnetdpt] = coordfromnc(ncQnet); |
| 171 |
Qnet = ncQnet{4}(1,:,:); |
| 172 |
% $$$ |
| 173 |
% $$$ ferfile = strcat(pathname,sla,snapshot,sla,filQEk,'.',netcdf_domain,'.',ext); |
| 174 |
% $$$ ncQEk = netcdf(ferfile,'nowrite'); |
| 175 |
% $$$ [QEklon QEklat QEkdpt] = coordfromnc(ncQEk); |
| 176 |
% $$$ QEk = ncQEk{4}(1,:,:); |
| 177 |
% $$$ |
| 178 |
ferfile = strcat(pathname,sla,snapshot,sla,filMLD,'.',netcdf_domain,'.',ext); |
| 179 |
ncMLD = netcdf(ferfile,'nowrite'); |
| 180 |
[MLDlon MLDlat MLDdpt] = coordfromnc(ncMLD); |
| 181 |
MLD = ncMLD{4}(1,:,:); |
| 182 |
|
| 183 |
ferfile = strcat(pathname,sla,snapshot,sla,filEKL,'.',netcdf_domain,'.',ext); |
| 184 |
ncEKL = netcdf(ferfile,'nowrite'); |
| 185 |
[EKLlon EKLlat EKLdpt] = coordfromnc(ncEKL); |
| 186 |
EKL = ncEKL{4}(1,:,:); |
| 187 |
|
| 188 |
|
| 189 |
%%%%%%%%%%%%%%%% |
| 190 |
% Q is defined on the same grid of ST but troncated by extrem 2 points, then here |
| 191 |
% make all fields defined with same limits... |
| 192 |
% In case of missing points, we add NaN. |
| 193 |
disp('Reshape them') |
| 194 |
ST = squeeze(ST(2:nz+1,2:ny+1,2:nx+1)); |
| 195 |
STdpt = STdpt(2:nz+1); |
| 196 |
STlon = STlon(2:nx+1); |
| 197 |
STlat = STlat(2:ny+1); |
| 198 |
T = squeeze(T(2:nz+1,2:ny+1,2:nx+1)); |
| 199 |
Tdpt = Tdpt(2:nz+1); |
| 200 |
Tlon = Tlon(2:nx+1); |
| 201 |
Tlat = Tlat(2:ny+1); |
| 202 |
JBz = squeeze(JBz(2:ny+1,2:nx+1)); |
| 203 |
JBzlon = JBzlon(2:nx+1); |
| 204 |
JBzlat = JBzlat(2:ny+1); |
| 205 |
Qnet = squeeze(Qnet(2:ny+1,2:nx+1)); |
| 206 |
Qnetlon = Qnetlon(2:nx+1); |
| 207 |
Qnetlat = Qnetlat(2:ny+1); |
| 208 |
MLD = squeeze(MLD(2:ny+1,2:nx+1)); |
| 209 |
MLDlon = MLDlon(2:nx+1); |
| 210 |
MLDlat = MLDlat(2:ny+1); |
| 211 |
EKL = squeeze(EKL(2:ny+1,2:nx+1)); |
| 212 |
EKLlon = EKLlon(2:nx+1); |
| 213 |
EKLlat = EKLlat(2:ny+1); |
| 214 |
ZETA = squeeze(ZETA(2:nz+1,:,:)); |
| 215 |
ZETA = cat(2,ZETA,ones(size(ZETA,1),1,size(ZETA,3)).*NaN); |
| 216 |
ZETA = cat(2,ones(size(ZETA,1),1,size(ZETA,3)).*NaN,ZETA); |
| 217 |
ZETA = cat(3,ZETA,ones(size(ZETA,1),size(ZETA,2),1).*NaN); |
| 218 |
ZETA = cat(3,ones(size(ZETA,1),size(ZETA,2),1).*NaN,ZETA); |
| 219 |
ZETAdpt = ZETAdpt(2:nz+1); |
| 220 |
ZETAlon = STlon; |
| 221 |
ZETAlat = STlat; |
| 222 |
OX = squeeze(OX(:,:,2:nx+1)); |
| 223 |
OX = cat(1,OX,ones(1,size(OX,2),size(OX,3)).*NaN); |
| 224 |
OX = cat(1,ones(1,size(OX,2),size(OX,3)).*NaN,OX); |
| 225 |
OX = cat(2,OX,ones(size(OX,1),1,size(OX,3)).*NaN); |
| 226 |
OX = cat(2,ones(size(OX,1),1,size(OX,3)).*NaN,OX); |
| 227 |
OXlon = STlon; |
| 228 |
OXlat = STlat; |
| 229 |
OXdpt = STdpt; |
| 230 |
OY = squeeze(OY(:,2:ny+1,:)); |
| 231 |
OY = cat(1,OY,ones(1,size(OY,2),size(OY,3)).*NaN); |
| 232 |
OY = cat(1,ones(1,size(OY,2),size(OY,3)).*NaN,OY); |
| 233 |
OY = cat(3,OY,ones(size(OY,1),size(OY,2),1).*NaN); |
| 234 |
OY = cat(3,ones(size(OY,1),size(OY,2),1).*NaN,OY); |
| 235 |
OYlon = STlon; |
| 236 |
OYlat = STlat; |
| 237 |
OYdpt = STdpt; |
| 238 |
|
| 239 |
|
| 240 |
% Planetary vorticity: |
| 241 |
f = 2*(2*pi/86400)*sin(ZETAlat*pi/180); |
| 242 |
[a f c]=meshgrid(ZETAlon,f,ZETAdpt); clear a c |
| 243 |
f = permute(f,[3 1 2]); |
| 244 |
|
| 245 |
% Apply mask: |
| 246 |
MASK = ones(size(ST,1),size(ST,2),size(ST,3)); |
| 247 |
MASK(find(isnan(ST))) = NaN; |
| 248 |
T = T.*MASK; |
| 249 |
Qnet = Qnet.*squeeze(MASK(1,:,:)); |
| 250 |
|
| 251 |
|
| 252 |
% Grid: |
| 253 |
global domain subdomain1 subdomain2 subdomain3 |
| 254 |
grid_setup |
| 255 |
subdomain = subdomain1; |
| 256 |
|
| 257 |
|
| 258 |
%%%%%%%%%%%%%%%% |
| 259 |
% Here we determine the isosurface and its depth: |
| 260 |
if getiso |
| 261 |
disp('Get iso-ST') |
| 262 |
[Iiso mask] = subfct_getisoS(ST,iso); |
| 263 |
Diso = ones(size(Iiso)).*NaN; |
| 264 |
Qiso = ones(size(Iiso)).*NaN; |
| 265 |
for ix = 1 : size(ST,3) |
| 266 |
for iy = 1 : size(ST,2) |
| 267 |
if ~isnan(Iiso(iy,ix)) & ~isnan( Q(Iiso(iy,ix),iy,ix) ) |
| 268 |
Diso(iy,ix) = STdpt(Iiso(iy,ix)); |
| 269 |
Qiso(iy,ix) = Q(Iiso(iy,ix),iy,ix); |
| 270 |
end %if |
| 271 |
end, end %for iy, ix |
| 272 |
end %if |
| 273 |
|
| 274 |
|
| 275 |
|
| 276 |
%%%%%%%%%%%%%%%% |
| 277 |
% "Normalise" the PV: |
| 278 |
fO = 2*(2*pi/86400)*sin(32*pi/180); |
| 279 |
dST = 27.6-25.4; |
| 280 |
H = -1000; |
| 281 |
RHOo = 1000; |
| 282 |
Qref = -fO/RHOo*dST/H; |
| 283 |
if getiso, QisoN = Qiso./Qref; end |
| 284 |
|
| 285 |
|
| 286 |
%%%%%%%%%%%%%%%% |
| 287 |
%%%%%%%%%%%%%%%% |
| 288 |
% Plots: |
| 289 |
disp('Plots ...') |
| 290 |
|
| 291 |
|
| 292 |
for i = 1 : length(pl) |
| 293 |
disp(strcat('Plotting module:',sub(pl(i)).name)) |
| 294 |
eval(sub(pl(i)).name(1:end-2),'disp(''Oups scratch...'');return'); |
| 295 |
end |
| 296 |
|
| 297 |
|
| 298 |
%%%%%%%%%%%%%%%% |
| 299 |
%%%%%%%%%%%%%%%% |
| 300 |
|
| 301 |
%else,disp(strcat('Skip:',snapshot));end |
| 302 |
|
| 303 |
fclose('all'); |
| 304 |
|
| 305 |
|
| 306 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 307 |
end %for it |