1 |
gmaze |
1.1 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
2 |
|
|
% Master function: |
3 |
|
|
|
4 |
|
|
function varargout = subfct_getvol(CHP,Z,Y,X,LIMITS) |
5 |
|
|
|
6 |
|
|
% Limits: |
7 |
|
|
%disp(strcat('Limits: ',num2str(LIMITS))); |
8 |
|
|
O = LIMITS(1); |
9 |
|
|
MZ = LIMITS(2); |
10 |
|
|
MY = sort( LIMITS(3:4) ); |
11 |
|
|
MX = sort( LIMITS(5:6) ); |
12 |
|
|
|
13 |
|
|
% Compute the volume: |
14 |
|
|
[V Vmat dV] = getvol(Z,Y,X,O,MZ,MY,MX,CHP); |
15 |
|
|
|
16 |
|
|
% Outputs: |
17 |
|
|
switch nargout |
18 |
|
|
case 1 |
19 |
|
|
varargout(1) = {V}; |
20 |
|
|
case 2 |
21 |
|
|
varargout(1) = {V}; |
22 |
|
|
varargout(2) = {Vmat}; |
23 |
|
|
case 3 |
24 |
|
|
varargout(1) = {V}; |
25 |
|
|
varargout(2) = {Vmat}; |
26 |
|
|
varargout(3) = {dV}; |
27 |
|
|
end %switch nargout |
28 |
|
|
|
29 |
|
|
|
30 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
31 |
|
|
% This function computes the volume limited southward by |
32 |
|
|
% MY(1), northward by iso-O (or MY(2) if iso-O reaches it), |
33 |
|
|
% eastward by MX(1), westward by MX(2) and downward by iso-O |
34 |
|
|
% (or MZ if iso-O reaches it). |
35 |
|
|
function varargout = getvol(Z,Y,X,O,MZ,MY,MX,CHP) |
36 |
|
|
|
37 |
|
|
%% Dim: |
38 |
|
|
nz = length(Z); |
39 |
|
|
ny = length(Y); |
40 |
|
|
nx = length(X); |
41 |
|
|
%disp(num2str([nz ny nx])); |
42 |
|
|
%% Indices: |
43 |
|
|
izmax = min( find( Z>=MZ ) ); |
44 |
|
|
iymin = min( find( Y>=MY(1) ) ); |
45 |
|
|
iymax = min( find( Y>=MY(2) ) ); |
46 |
|
|
ixmin = min( find( X>=MX(1) ) ); |
47 |
|
|
ixmax = min( find( X>=MX(2) ) ); |
48 |
|
|
%disp(num2str([1 izmax iymin iymax ixmin ixmax])); |
49 |
|
|
|
50 |
|
|
%% 1- determine the 3D matrix of volume elements defined by |
51 |
|
|
% the grid: |
52 |
|
|
dV = getdV(Z,Y,X); |
53 |
|
|
|
54 |
|
|
%% 2- compute the 3D volume matrix where 1 means dV must be |
55 |
|
|
% counted and 0 must not: |
56 |
|
|
|
57 |
|
|
V = ones(nz,ny,nx); % initialy keep all points |
58 |
|
|
|
59 |
|
|
% Exclude northward iso-O limits: |
60 |
|
|
% NB: here the test depends on the meridional gradient of CHP |
61 |
|
|
% if CHP increase (resp. decreases) with LAT then we must |
62 |
|
|
% keep lower (resp. higher) values than O limit |
63 |
|
|
% a: determine test type: |
64 |
|
|
N = iymax - iymin + 1; % Number of Y points in the domain |
65 |
|
|
CHPsouth = nanmean(nanmean(squeeze(CHP(1,iymin:iymin+fix(N/2),ixmin:ixmax)))); |
66 |
|
|
CHPnorth = nanmean(nanmean(squeeze(CHP(1,iymin+fix(N/2):iymax,ixmin:ixmax)))); |
67 |
|
|
SNgrad = (CHPnorth - CHPsouth)./abs(CHPnorth - CHPsouth); |
68 |
|
|
%disp(strcat('Northward gradient sign is:',num2str(SNgrad))); |
69 |
|
|
switch SNgrad |
70 |
|
|
case 1, testype = 'le'; % Less than or equal |
71 |
|
|
case -1, testype = 'ge'; % Greater than or equal |
72 |
|
|
end %switch |
73 |
|
|
% b: exclude points |
74 |
|
|
for iz=1:izmax |
75 |
|
|
chpZ = squeeze(CHP(iz,:,:)); |
76 |
|
|
V(iz,:,:)=double(feval(testype,chpZ,O)); |
77 |
|
|
end %for iz |
78 |
|
|
|
79 |
|
|
% Exclude southward limit: |
80 |
|
|
V(:,1:iymin,:) = zeros(nz,iymin,nx); |
81 |
|
|
|
82 |
|
|
% Exclude northward limit: |
83 |
|
|
V(:,iymax:ny,:) = zeros(nz,(ny-iymax)+1,nx); |
84 |
|
|
|
85 |
|
|
% Exclude westward limit: |
86 |
|
|
V(:,:,1:ixmin) = zeros(nz,ny,ixmin); |
87 |
|
|
|
88 |
|
|
% Exclude eastward limit: |
89 |
|
|
V(:,:,ixmax:nx) = zeros(nz,ny,(nx-ixmax)+1); |
90 |
|
|
|
91 |
|
|
% Exclude downward limit: |
92 |
|
|
V(izmax:nz,:,:) = zeros((nz-izmax)+1,ny,nx); |
93 |
|
|
|
94 |
|
|
|
95 |
|
|
%% 3- Then compute the volume by summing dV elements |
96 |
|
|
% for non 0 V points |
97 |
|
|
Vkeep = V.*dV; |
98 |
|
|
Vkeep = sum(sum(sum(Vkeep))); |
99 |
|
|
|
100 |
|
|
%% 4- Outputs: |
101 |
|
|
switch nargout |
102 |
|
|
case 1 |
103 |
|
|
varargout(1) = {Vkeep}; % Volume single value |
104 |
|
|
case 2 |
105 |
|
|
varargout(1) = {Vkeep}; |
106 |
|
|
varargout(2) = {V}; % Logical V matrix with included/excluded points |
107 |
|
|
case 3 |
108 |
|
|
varargout(1) = {Vkeep}; |
109 |
|
|
varargout(2) = {V}; |
110 |
|
|
varargout(3) = {dV}; % Volume elements matrix |
111 |
|
|
end %switch nargout |
112 |
|
|
|
113 |
|
|
|
114 |
|
|
|
115 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
116 |
|
|
% This function computes the 3D dV volume elements. |
117 |
|
|
function dv = getdV(Z,Y,X); |
118 |
|
|
|
119 |
|
|
nz = length(Z); |
120 |
|
|
ny = length(Y); |
121 |
|
|
nx = length(X); |
122 |
|
|
|
123 |
|
|
%%% Compute the DY: |
124 |
|
|
% Assuming Y is independant of ix: |
125 |
|
|
d = m_lldist([1 1]*X(1),Y); |
126 |
|
|
dy = [d(1)/2 (d(2:length(d))+d(1:length(d)-1))/2 d(length(d))/2]; |
127 |
|
|
dy = meshgrid(dy,X)'; |
128 |
|
|
|
129 |
|
|
%%% Compute the DX: |
130 |
|
|
clear d |
131 |
|
|
for iy = 1 : ny |
132 |
|
|
d(:,iy) = m_lldist(X,Y([iy iy])); |
133 |
|
|
end |
134 |
|
|
dx = [d(1,:)/2 ; ( d(2:size(d,1),:) + d(1:size(d,1)-1,:) )./2 ; d(size(d,1),:)/2]; |
135 |
|
|
dx = dx'; |
136 |
|
|
|
137 |
|
|
%% Compute the horizontal DS surface element: |
138 |
|
|
ds = dx.*dy; |
139 |
|
|
|
140 |
|
|
%% Compute the DZ: |
141 |
|
|
d = diff(Z); |
142 |
|
|
dz = [d(1)/2 ( d(2:length(d)) + d(1:length(d)-1) )./2 d(length(d))/2]; |
143 |
|
|
|
144 |
|
|
%% Then compute the DV volume elements: |
145 |
|
|
dv = ones(nz,ny,nx)*NaN; |
146 |
|
|
for iz=1:nz |
147 |
|
|
dv(iz,:,:) = dz(iz).*ds; |
148 |
|
|
end |
149 |
|
|
|