1 |
gmaze |
1.1 |
% DV = subfct_getdV(DEPTH,LATITUDE,LONGITUDE) |
2 |
|
|
% Compute 3D volume elements matrix from geographical |
3 |
|
|
% axis Z(<0,downward), Y and X |
4 |
|
|
|
5 |
|
|
function DV = subfct_getdV(Z,Y,X) |
6 |
|
|
|
7 |
|
|
nz = length(Z); |
8 |
|
|
ny = length(Y); |
9 |
|
|
nx = length(X); |
10 |
|
|
|
11 |
|
|
DV = zeros(nz,ny,nx); |
12 |
|
|
|
13 |
|
|
% Vertical elements: |
14 |
|
|
for iz = 1 : nz % Toward the deep ocean (because DPT<0) |
15 |
|
|
% Vertical grid length centered at Z(iy) |
16 |
|
|
if iz == 1 |
17 |
|
|
dz = abs(Z(1)) + abs(sum(diff(Z(iz:iz+1))/2)); |
18 |
|
|
elseif iz == nz % We don't know the real ocean depth |
19 |
|
|
dz = abs(sum(diff(Z(iz-1:iz))/2)); |
20 |
|
|
else |
21 |
|
|
dz = abs(sum(diff(Z(iz-1:iz+1))/2)); |
22 |
|
|
end |
23 |
|
|
DZ(iz) = dz; |
24 |
|
|
end |
25 |
|
|
|
26 |
|
|
% Surface and Volume elements: |
27 |
|
|
for ix = 1 : nx |
28 |
|
|
for iy = 1 : ny |
29 |
|
|
% Zonal grid length centered in X(ix),Y(iY) |
30 |
|
|
if ix == 1 |
31 |
|
|
dx = abs(m_lldist([X(ix) X(ix+1)],[1 1]*Y(iy)))/2; |
32 |
|
|
elseif ix == nx |
33 |
|
|
dx = abs(m_lldist([X(ix-1) X(ix)],[1 1]*Y(iy)))/2; |
34 |
|
|
else |
35 |
|
|
dx = abs(m_lldist([X(ix-1) X(ix)],[1 1]*Y(iy)))/2+abs(m_lldist([X(ix) X(ix+1)],[1 1]*Y(iy)))/2; |
36 |
|
|
end |
37 |
|
|
|
38 |
|
|
% Meridional grid length centered in X(ix),Y(iY) |
39 |
|
|
if iy == 1 |
40 |
|
|
dy = abs(m_lldist([1 1]*X(ix),[Y(iy) Y(iy+1)]))/2; |
41 |
|
|
elseif iy == ny |
42 |
|
|
dy = abs(m_lldist([1 1]*X(ix),[Y(iy-1) Y(iy)]))/2; |
43 |
|
|
else |
44 |
|
|
dy = abs(m_lldist([1 1]*X(ix),[Y(iy-1) Y(iy)]))/2+abs(m_lldist([1 1]*X(ix),[Y(iy) Y(iy+1)]))/2; |
45 |
|
|
end |
46 |
|
|
|
47 |
|
|
% Surface element: |
48 |
|
|
DA = dx*dy.*ones(1,nz); |
49 |
|
|
|
50 |
|
|
% Volume element: |
51 |
|
|
DV(:,iy,ix) = DZ.*DA; |
52 |
|
|
end %for iy |
53 |
|
|
end %for ix |
54 |
|
|
|