| 1 |
% [BN BS BW BE BT BB] = getVOLbounds(PII) |
| 2 |
% |
| 3 |
% Given a 1/0 3D matrix PII, determine faces bounding the volume |
| 4 |
% |
| 5 |
% INPUT: |
| 6 |
% PII is of dimensions: PII(NDPT,NLAT,NLON) |
| 7 |
% with: |
| 8 |
% DPT downward |
| 9 |
% LAT northward |
| 10 |
% LON eastward |
| 11 |
% |
| 12 |
% OUTPUT: |
| 13 |
% BN,BS, BW,BE, BT,BB are 3D matrices like PII, filled with 0 or 1. |
| 14 |
% 1 indicates a surface bounding the volume |
| 15 |
% |
| 16 |
% BN stands for northern bound |
| 17 |
% BS stands for southern bound |
| 18 |
% BW stands for western bound |
| 19 |
% BE stands for eastern bound |
| 20 |
% BT stands for top bound |
| 21 |
% BB stands for bottom bound |
| 22 |
% |
| 23 |
% gmaze@mit.edu 2007/07/19 |
| 24 |
% |
| 25 |
|
| 26 |
function varargout = getVOLbounds(varargin) |
| 27 |
|
| 28 |
|
| 29 |
pii = varargin{1}; |
| 30 |
ndpt = size(pii,1); |
| 31 |
nlat = size(pii,2); |
| 32 |
nlon = size(pii,3); |
| 33 |
|
| 34 |
|
| 35 |
bounds_W = zeros(ndpt,nlat,nlon); |
| 36 |
bounds_E = zeros(ndpt,nlat,nlon); |
| 37 |
bounds_S = zeros(ndpt,nlat,nlon); |
| 38 |
bounds_N = zeros(ndpt,nlat,nlon); |
| 39 |
bounds_T = zeros(ndpt,nlat,nlon); |
| 40 |
bounds_B = zeros(ndpt,nlat,nlon); |
| 41 |
|
| 42 |
for iz = 1 : ndpt |
| 43 |
for iy = 1 : nlat |
| 44 |
for ix = 1 : nlon |
| 45 |
if pii(iz,iy,ix) == 1 |
| 46 |
|
| 47 |
% Is it a western boundary ? |
| 48 |
if ix-1 <= 0 % Reach the western domain limit |
| 49 |
bounds_W(iz,iy,ix) = 1; |
| 50 |
elseif pii(iz,iy,ix-1) == 0 % Reach the western volume limit |
| 51 |
bounds_W(iz,iy,ix) = 1; |
| 52 |
end |
| 53 |
% Is it a eastern boundary ? |
| 54 |
if ix+1 >= nlon % Reach the domain limit |
| 55 |
bounds_E(iz,iy,ix) = 1; |
| 56 |
elseif pii(iz,iy,ix+1) == 0 |
| 57 |
bounds_E(iz,iy,ix) = 1; |
| 58 |
end |
| 59 |
|
| 60 |
% Is it a southern boundary ? |
| 61 |
if iy-1 <= 0 % Reach the domain limit |
| 62 |
bounds_S(iz,iy,ix) = 1; |
| 63 |
elseif pii(iz,iy-1,ix) == 0 |
| 64 |
bounds_S(iz,iy,ix) = 1; |
| 65 |
end |
| 66 |
% Is it a northern boundary ? |
| 67 |
if iy+1 >= nlat % Reach the domain limit |
| 68 |
bounds_N(iz,iy,ix) = 1; |
| 69 |
elseif pii(iz,iy+1,ix) == 0 |
| 70 |
bounds_N(iz,iy,ix) = 1; |
| 71 |
end |
| 72 |
|
| 73 |
% Is it a top boundary ? |
| 74 |
if iz-1 <= 0 % Reach the domain limit |
| 75 |
bounds_T(iz,iy,ix) = 1; |
| 76 |
elseif pii(iz-1,iy,ix) == 0 |
| 77 |
bounds_T(iz,iy,ix) = 1; |
| 78 |
end |
| 79 |
% Is it a bottom boundary ? |
| 80 |
if iz+1 >= ndpt % Reach the domain limit |
| 81 |
bounds_B(iz,iy,ix) = 1; |
| 82 |
elseif pii(iz+1,iy,ix) == 0 |
| 83 |
bounds_B(iz,iy,ix) = 1; |
| 84 |
end |
| 85 |
|
| 86 |
end % if |
| 87 |
end %for ix |
| 88 |
end % for iy |
| 89 |
end % for iz |
| 90 |
|
| 91 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OUTPUTS |
| 92 |
switch nargout |
| 93 |
|
| 94 |
case 1 |
| 95 |
varargout(1) = {bounds_N}; |
| 96 |
case 2 |
| 97 |
varargout(1) = {bounds_N}; |
| 98 |
varargout(2) = {bounds_S}; |
| 99 |
case 3 |
| 100 |
varargout(1) = {bounds_N}; |
| 101 |
varargout(2) = {bounds_S}; |
| 102 |
varargout(3) = {bounds_W}; |
| 103 |
case 4 |
| 104 |
varargout(1) = {bounds_N}; |
| 105 |
varargout(2) = {bounds_S}; |
| 106 |
varargout(3) = {bounds_W}; |
| 107 |
varargout(4) = {bounds_E}; |
| 108 |
case 5 |
| 109 |
varargout(1) = {bounds_N}; |
| 110 |
varargout(2) = {bounds_S}; |
| 111 |
varargout(3) = {bounds_W}; |
| 112 |
varargout(4) = {bounds_E}; |
| 113 |
varargout(5) = {bounds_T}; |
| 114 |
case 6 |
| 115 |
varargout(1) = {bounds_N}; |
| 116 |
varargout(2) = {bounds_S}; |
| 117 |
varargout(3) = {bounds_W}; |
| 118 |
varargout(4) = {bounds_E}; |
| 119 |
varargout(5) = {bounds_T}; |
| 120 |
varargout(6) = {bounds_B}; |
| 121 |
|
| 122 |
end %switch |