| 1 |
gmaze |
1.1 |
% [H,h,[dH,dh]] = diagHatisoC(C,Z,isoC,[dC]) |
| 2 |
|
|
% |
| 3 |
|
|
% Get depth of C(depth,lat,lon) = isoC |
| 4 |
|
|
% Z < 0 |
| 5 |
|
|
% |
| 6 |
|
|
% OUTPUTS: |
| 7 |
|
|
% H(lat,lon) is the depth determine with the input resolution |
| 8 |
|
|
% h(lat,lon) is a more accurate depth (determined with interpolation) |
| 9 |
|
|
% dH(lat,lon) is the thickness of the layer: isoC-dC < C < isoC+dC from H |
| 10 |
|
|
% dh(lat,lon) is the thickness of the layer: isoC-dC < C < isoC+dC from h |
| 11 |
|
|
% |
| 12 |
|
|
% G. Maze, MIT, June 2007 |
| 13 |
|
|
% |
| 14 |
|
|
|
| 15 |
|
|
function varargout = diagHatisoC(C,Z,isoC,varargin) |
| 16 |
|
|
|
| 17 |
|
|
|
| 18 |
|
|
% 0 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PREPROC |
| 19 |
|
|
[nz,ny,nx] = size(C); |
| 20 |
|
|
H = zeros(ny,nx).*NaN; |
| 21 |
|
|
if nargout >= 2 |
| 22 |
|
|
h = zeros(ny,nx).*NaN; |
| 23 |
|
|
z = [0:-1:Z(end)]; % Vertical axis of the interpolated depth |
| 24 |
|
|
if nargin == 4 |
| 25 |
|
|
dh = zeros(ny,nx).*NaN; |
| 26 |
|
|
end |
| 27 |
|
|
end |
| 28 |
|
|
if nargin == 4 |
| 29 |
|
|
dC = varargin{1}; |
| 30 |
|
|
dH = zeros(ny,nx).*NaN; |
| 31 |
|
|
end |
| 32 |
|
|
|
| 33 |
|
|
% 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% COMPUTING |
| 34 |
|
|
warning off |
| 35 |
|
|
for ix = 1 : nx |
| 36 |
|
|
for iy = 1 : ny |
| 37 |
|
|
c = squeeze(C(:,iy,ix))'; |
| 38 |
|
|
if isnan(c(1)) ~= 1 |
| 39 |
|
|
if length(find(c>=isoC))>0 & length(find(c<=isoC))>0 |
| 40 |
|
|
|
| 41 |
|
|
% Raw value: |
| 42 |
|
|
[cm icm] = min(abs(abs(c)-abs(isoC))); |
| 43 |
|
|
H(iy,ix) = Z(icm); |
| 44 |
|
|
|
| 45 |
|
|
if nargout >= 2 |
| 46 |
|
|
% Interp guess: |
| 47 |
|
|
cc = feval(@interp1,Z,c,z,'linear'); |
| 48 |
|
|
[cm icm] = min(abs(abs(cc)-abs(isoC))); |
| 49 |
|
|
h(iy,ix) = z(icm); |
| 50 |
|
|
end % if 2 outputs |
| 51 |
|
|
|
| 52 |
|
|
if nargin == 4 |
| 53 |
|
|
[cm icm1] = min(abs(abs(c)-abs(isoC+dC))); |
| 54 |
|
|
[cm icm2] = min(abs(abs(c)-abs(isoC-dC))); |
| 55 |
|
|
dH(iy,ix) = max(Z([icm1 icm2])) - min(Z([icm1 icm2])); |
| 56 |
|
|
|
| 57 |
|
|
if nargout >= 2 |
| 58 |
|
|
[cm icm1] = min(abs(abs(cc)-abs(isoC+dC))); |
| 59 |
|
|
[cm icm2] = min(abs(abs(cc)-abs(isoC-dC))); |
| 60 |
|
|
dh(iy,ix) = max(z([icm1 icm2])) - min(z([icm1 icm2])); |
| 61 |
|
|
end % if 2 outputs |
| 62 |
|
|
end % if thickness |
| 63 |
|
|
|
| 64 |
|
|
end % if found value in the profile |
| 65 |
|
|
end % if point n ocean |
| 66 |
|
|
end |
| 67 |
|
|
end |
| 68 |
|
|
warning on |
| 69 |
|
|
|
| 70 |
|
|
% 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OUTPUTS |
| 71 |
|
|
switch nargout |
| 72 |
|
|
case 1 |
| 73 |
|
|
varargout(1) = {H}; |
| 74 |
|
|
case 2 |
| 75 |
|
|
varargout(1) = {H}; |
| 76 |
|
|
varargout(2) = {h}; |
| 77 |
|
|
case 3 |
| 78 |
|
|
varargout(1) = {H}; |
| 79 |
|
|
varargout(2) = {h}; |
| 80 |
|
|
varargout(3) = {dH}; |
| 81 |
|
|
case 4 |
| 82 |
|
|
varargout(1) = {H}; |
| 83 |
|
|
varargout(2) = {h}; |
| 84 |
|
|
varargout(3) = {dH}; |
| 85 |
|
|
varargout(4) = {dh}; |
| 86 |
|
|
end |