1 |
gmaze |
1.1 |
% |
2 |
|
|
% I = intbet2outcrops(TRACER,LIMITS,LAT,LONG) |
3 |
|
|
% |
4 |
|
|
% This function computes the horizontal surface integral between two |
5 |
|
|
% outcrops of the TRACER field, given fixed limits eastward, westward |
6 |
|
|
% and southward. |
7 |
|
|
% |
8 |
|
|
% TRACER = TRACER(LAT,LONG) : surface tracer variable in 2D |
9 |
|
|
% LIMITS = [OUTCROP1 OUTCROP2 MAX_LAT1 MAX_LAT2 MAX_LONG1 MAX_LONG2] |
10 |
|
|
% : limit's values (MAX_LAT2 is used only if |
11 |
|
|
% the outcrop's surfaces reach them). |
12 |
|
|
% LAT : latitude axis (1D), degrees northward |
13 |
|
|
% LONG : longitude axis (1D), degrees east |
14 |
|
|
% I : single surface integral value |
15 |
|
|
% |
16 |
|
|
% 06/15/2006 |
17 |
|
|
% gmaze@mit.edu |
18 |
|
|
% |
19 |
|
|
|
20 |
|
|
|
21 |
|
|
function varargout = intbet2outcrops(TRACER,LIMITS,LAT,LONG) |
22 |
|
|
|
23 |
|
|
|
24 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
25 |
|
|
% PRE-PROCESS and ERROR CHECK % |
26 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
27 |
|
|
|
28 |
|
|
% Check number of input: |
29 |
|
|
if nargin ~= 4 |
30 |
|
|
help intbet2outcrops.m |
31 |
|
|
error('intbet2outcrops.m : Wrong number of parameters') |
32 |
|
|
return |
33 |
|
|
end %if |
34 |
|
|
|
35 |
|
|
% Check dimensions: |
36 |
|
|
n = size(TRACER); |
37 |
|
|
if length(n)==2 |
38 |
|
|
[ny nx] = size(TRACER); |
39 |
|
|
if ny~=length(LAT) | nx~=length(LONG) |
40 |
|
|
help intbet2outcrops.m |
41 |
|
|
error('intbet2outcrops.m : Axis must have same dimensions than TRACER field'); |
42 |
|
|
return |
43 |
|
|
end %if |
44 |
|
|
else |
45 |
|
|
help intbet2outcrops.m |
46 |
|
|
error('intbet2outcrops.m : TRACER must be a 2D field') |
47 |
|
|
return |
48 |
|
|
end %if |
49 |
|
|
|
50 |
|
|
% Ensure that axis are of dim: (1,N) and well sorted (increasing values): |
51 |
|
|
a=size(LAT); |
52 |
|
|
if a(1) ~= 1, LAT=LAT'; end |
53 |
|
|
S = sort(LAT); |
54 |
|
|
if S ~= LAT |
55 |
|
|
help intbet2outcrops.m |
56 |
|
|
error('intbet2outcrops.m : LAT must be increasing values') |
57 |
|
|
return |
58 |
|
|
end %if |
59 |
|
|
a=size(LONG); |
60 |
|
|
if a(1) ~= 1, LONG=LONG'; end |
61 |
|
|
S = sort(LONG); |
62 |
|
|
if S ~= LONG |
63 |
|
|
help intbet2outcrops.m |
64 |
|
|
error('intbet2outcrops.m : LONG must be increasing values') |
65 |
|
|
return |
66 |
|
|
end %if |
67 |
|
|
|
68 |
|
|
% LIMITS definition: |
69 |
|
|
if length(LIMITS) ~= 6 |
70 |
|
|
help intbet2outcrops.m |
71 |
|
|
error('intbet2outcrops.m : LIMITS must contains 6 values') |
72 |
|
|
return |
73 |
|
|
end %if |
74 |
|
|
OUTCROPS = sort( LIMITS(1:2) ); |
75 |
|
|
LAT_MAX = sort( LIMITS(3:4) ); |
76 |
|
|
LONG_MAX = sort( LIMITS(5:6) ); |
77 |
|
|
|
78 |
|
|
|
79 |
|
|
|
80 |
|
|
%%%%%%%%%%%%%%%%%%%% |
81 |
|
|
% COMPUTE INTEGRAL % |
82 |
|
|
%%%%%%%%%%%%%%%%%%%% |
83 |
|
|
% We first determine the element surface matrix and points to integrate: |
84 |
|
|
[I1 I1mat dI1] = subfct_getsurf(TRACER,LAT,LONG,[OUTCROPS(1) LAT_MAX LONG_MAX]); |
85 |
|
|
[I2 I2mat dI2] = subfct_getsurf(TRACER,LAT,LONG,[OUTCROPS(2) LAT_MAX LONG_MAX]); |
86 |
|
|
|
87 |
|
|
% Then we determine the outcrop surface limits: |
88 |
|
|
I1mat(find(I1mat==0))=NaN; |
89 |
|
|
I2mat(find(I2mat==0))=NaN; |
90 |
|
|
I1mat(find(I1mat==1))=0; |
91 |
|
|
I2mat(find(I2mat==1))=0; |
92 |
|
|
Imat = I1mat + I2mat; |
93 |
|
|
Imat(find(Imat==0))=1; |
94 |
|
|
Imat(isnan(Imat))=0; |
95 |
|
|
Imat = logical(Imat); |
96 |
|
|
|
97 |
|
|
% And the integral of the TRACER on it: |
98 |
|
|
I = sum(TRACER(Imat).*dI1(Imat)); |
99 |
|
|
|
100 |
|
|
|
101 |
|
|
|
102 |
|
|
|
103 |
|
|
%%%%%%%%%%% |
104 |
|
|
% OUTPUTS % |
105 |
|
|
%%%%%%%%%%% |
106 |
|
|
switch nargout |
107 |
|
|
case 1 |
108 |
|
|
varargout(1) = {I}; |
109 |
|
|
case 2 |
110 |
|
|
varargout(1) = {I}; |
111 |
|
|
varargout(2) = {Imat}; |
112 |
|
|
case 3 |
113 |
|
|
varargout(1) = {I}; |
114 |
|
|
varargout(2) = {Imat}; |
115 |
|
|
varargout(3) = {dI1}; |
116 |
|
|
end %switch nargout |
117 |
|
|
|
118 |
|
|
|
119 |
|
|
|