/[MITgcm]/MITgcm_contrib/gmaze_pv/diagWALIN.m
ViewVC logotype

Contents of /MITgcm_contrib/gmaze_pv/diagWALIN.m

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (show annotations) (download)
Wed Sep 19 15:37:38 2007 UTC (16 years, 7 months ago) by gmaze
Branch: MAIN
CVS Tags: HEAD
General Update

1 % [F,A,D,CROP] = diagWALIN(FLAG,C1,C2,Qnet,Snet,Classes,dA)
2 %
3 % DESCRIPTION:
4 % Compute the transformation rate of a surface outcrop class (potential
5 % density or SST) from surface net heat flux Qnet and salt flux Snet
6 % according to the Walin theory.
7 %
8 % INPUTS:
9 % FLAG : Can either be: 0, 1 or 2
10 % 0: Outcrop field is surface potential density computed
11 % from C1=SST and C2=SSS
12 % 1: Outcrop field is surface potential density given by C1
13 % 2: Outcrop field is SST and potential density is computed
14 % from C1=SST and C2=SSS
15 % C1,C2 : Depends on option FLAG:
16 % - FLAG = 0 :
17 % C1 : Sea surface temperature (degC)
18 % C2 : Sea surface salinity (PSU)
19 % - FLAG = 1 :
20 % C1 : Surface potential density (kg/m3)
21 % C2 : Not used
22 % - FLAG = 2 :
23 % C1 : Sea surface temperature (degC)
24 % C2 : Sea surface salinity (PSU)
25 % Qnet : Downward net surface heat flux (W/m2)
26 % Snet : Downward net surface salt flux (kg/m2/s) ->
27 % ie, Snet = rho*beta*SSS*(E-P)
28 % Classes : Range of outcrops to explore (eg: [20:.1:30] for potential density)
29 % lon,lat : axis
30 % dA : Matrix of grid surface elements (m2) centered in (lon,lat) of Ci
31 %
32 %
33 % OUTPUTS:
34 % F(3,:) : Transformation rate (m3/s) (from 1:Qnet, 2:Snet and 3:Total)
35 % A : Surface of each outcrops
36 % D(3,:,:) : Maps of density flux (kg/m2/s) from 1:Qnet, 2:Snet and 3:Total
37 % CROP(:,:) : Map of the surface field used to compute outcrop's contours
38 %
39 %
40 % NOTES:
41 % - Fields are of the format: C(LAT,LON)
42 % - The potential density is computed with the equation of state routine from
43 % the MITgcm called densjmd95.m
44 % (see: http://mitgcm.org/cgi-bin/viewcvs.cgi/MITgcm_contrib/gmaze_pv/subfct/densjmd95.m)
45 % - Snet may be filled of NaN if not available, its F component won't computed
46 %
47 %
48 % AUTHOR:
49 % Guillaume Maze / MIT 2006
50 %
51 % HISTORY:
52 % - Revised: 06/28/2007
53 % * Add option do directly give the pot. density as input
54 % * Add options do take SST as outcrop
55 % - Created: 06/22/2007
56 %
57 % REFERENCES:
58 % Walin G. 1982: On the relation between sea-surface
59 % heat flow and thermal circulation in the ocean. Tellus N24
60 %
61
62 % The routine is not optimized for speed but for clarity, that's why we
63 % compute buoyancy fluxes, etc...
64 %
65 % TO DO:
66 % - Fix signs in density fluxes to be correct albeit consistent with F right now
67 % - Create options for non regular CLASS
68 % - Create options to also compute the formation rate M
69 % - Create options to compute an error bar
70 % - Create check of inputs section
71
72 function varargout = diagWALIN(FLAG,C1,C2,QNET,SNET,CLASS,dA)
73
74
75 % 0 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PREPROC
76 % Variables:
77 nlat = size(C1,1);
78 nlon = size(C1,2);
79 CLASS = CLASS(:);
80
81 % Determine surface fields from which we'll take outcrops contours:
82 switch FLAG
83
84 case {0,2} % Need to compute SIGMA THETA
85 SST = C1;
86 SSS = C2;
87 if FLAG == 0 % Outcrop is SIGMA THETA:
88 OUTCROP = ST;
89 ST = densjmd95(SSS,SST,zeros(nlat,nlon)) - 1000; % Real surface (depth = 0)
90 %dpt = -5; ST = densjmd95(SSS,SST,(0.09998*9.81*dpt)*ones(nlat,nlon)) - 1000; % Model surface
91 elseif FLAG == 2 % Outcrop is SST:
92 OUTCROP = SST;
93 if length(find(isnan(SSS)==1)) == nlat*nlon
94 ST = ones(nlat,nlon).*1035;
95 else
96 ST = densjmd95(SSS,SST,zeros(nlat,nlon)) - 1000;
97 end
98 end
99
100 case 1
101 ST = C1; % Potential density
102 OUTCROP = ST;
103 end
104
105 % Create a flag if we don't find salt flux:
106 if length(find(isnan(SNET)==1)) == nlat*nlon
107 do_ep = 0;
108 else
109 do_ep = 1;
110 end
111
112 % Physical constants:
113 g = 9.81; % Gravity (m/s2)
114 Cp = 3994; % Specific heat of sea water (J/K/kg)
115 rho0 = 1035; % Density of reference (kg/m3)
116 rho = ST+1000; % Density (kg/m3)
117 % Thermal expansion coefficient (1/K)
118 if exist('SST') & exist('SSS') & length(find(isnan(SSS)==1)) ~= nlat*nlon
119 alpha = sw_alpha(SSS,SST,zeros(nlat,nlon));
120 else
121 alpha = 2.*1e-4;
122 end
123
124 %ix=200;iy=100;[SST(iy,ix),SSS(iy,ix),QNET(iy,ix),SNET(iy,ix)]
125
126 % 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BUOYANCY FLUX: b
127 % The buoyancy flux (m/s2*m/s=m2/s3) is computed as:
128 % b = g/rho*( alpha/Cp*QNET - SNET )
129 % b = g/rho*alpha/Cp*QNET - g/rho*SNET
130 % b = b_hf + b_ep
131 % QNET the net heat flux (W/m2) and SNET the net salt flux (kg/m2/s)
132 b_hf = g.*alpha./Cp.*QNET./rho;
133 if do_ep==1, b_ep = -g*SNET./rho; else b_ep = zeros(nlat,nlon); end
134 b = b_hf + do_ep*b_ep;
135
136
137 % 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DENSITY FLUX: bd
138 % Buoyancy flux is transformed into density flux (kg/m3*m/s = kg/m2/s):
139 % bd = - rho/g * b
140 % with b the buoyancy flux
141 bd_hf = - rho/g.*b_hf;
142 bd_ep = - rho/g.*b_ep;
143 bd = - rho/g.*b;
144
145 %[bd_hf(iy,ix),bd_ep(iy,ix),bd(iy,ix)]
146
147 % 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NET MASS FLUX INTEGRATED OVER OUTCROPS: Bd
148 % The amount of mass water flux over an outcrop is computed as:
149 % Bd = SUM_ij bd(i,j)*dA(i,j)*MASK(i,j,OUTCROP)
150 % with MASK(i,j,OUTCROP) = 1 where OUTCROP(i,j)-dC/2 <= OUTCROP(i,j) < OUTCROP(i,j)+dC/2
151 % = 0 otherwise
152 % Outcrops are defined with an increment of:
153 dCROP = diff(CLASS(1:2));
154
155 switch FLAG
156 case {0,1}, coef = 1; % Potential density as outcrops
157 case 2, coef = 1./(alpha.*rho0); % SST as outcrops
158 end %switch
159
160
161 % Surface integral:
162 for iC = 1 : length(CLASS)
163 CROPc = CLASS(iC);
164 mask = zeros(nlat,nlon);
165 mask(find( (CROPc-dCROP/2 <= OUTCROP) & (OUTCROP < CROPc+dCROP/2) )) = 1;
166 %if CROPc == 18,[CROPc-dCROP/2 CROPc+dCROP/2],global mask18,mask18=mask;end;
167 Bd_hf(iC) = nansum(nansum(dA.*mask.*bd_hf.*coef,1),2);
168 Bd_ep(iC) = nansum(nansum(dA.*mask.*bd_ep.*coef,1),2);
169 Bd(iC) = nansum(nansum(dA.*mask.*bd.*coef,1),2);
170 AA(iC) = nansum(nansum(dA.*mask,1),2);
171 end %for iC
172
173
174 % 4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TRANSFORMATION RATE: F
175 % F is defined as the convergence/divergence of the integrated mass flux Bd.
176 % F = Bd(CROP) / dCROP
177 % where Bd is the mass flux over an outcrop.
178 F_hf = Bd_hf./dCROP;
179 F_ep = Bd_ep./dCROP;
180 F = Bd./dCROP;
181
182
183
184 % 5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OUTPUTS
185 % Transformation rate:
186 TRANSFORM_RATE(1,:) = F_hf;
187 TRANSFORM_RATE(2,:) = F_ep;
188 TRANSFORM_RATE(3,:) = F;
189
190 % Density flux:
191 DENSITY_FLUX(1,:,:) = bd_hf;
192 DENSITY_FLUX(2,:,:) = bd_ep;
193 DENSITY_FLUX(3,:,:) = bd;
194
195 switch nargout
196 case 1
197 varargout(1) = {TRANSFORM_RATE};
198 case 2
199 varargout(1) = {TRANSFORM_RATE};
200 varargout(2) = {AA};
201 case 3
202 varargout(1) = {TRANSFORM_RATE};
203 varargout(2) = {AA};
204 varargout(3) = {DENSITY_FLUX};
205 case 4
206 varargout(1) = {TRANSFORM_RATE};
207 varargout(2) = {AA};
208 varargout(3) = {DENSITY_FLUX};
209 varargout(4) = {OUTCROP};
210 end %switch

  ViewVC Help
Powered by ViewVC 1.1.22