| 1 | % [F,A,D,CROP] = diagWALIN(FLAG,C1,C2,Qnet,Snet,Classes,dA) | 
| 2 | % | 
| 3 | % DESCRIPTION: | 
| 4 | % Compute the transformation rate of a surface outcrop class (potential | 
| 5 | % density or SST) from surface net heat flux Qnet and salt flux Snet | 
| 6 | % according to the Walin theory. | 
| 7 | % | 
| 8 | % INPUTS: | 
| 9 | % FLAG    : Can either be: 0, 1 or 2 | 
| 10 | %           0: Outcrop field is surface potential density computed | 
| 11 | %              from C1=SST and C2=SSS | 
| 12 | %           1: Outcrop field is surface potential density given by C1 | 
| 13 | %           2: Outcrop field is SST and potential density is computed | 
| 14 | %              from C1=SST and C2=SSS | 
| 15 | % C1,C2   : Depends on option FLAG: | 
| 16 | %           - FLAG = 0 : | 
| 17 | %                        C1 : Sea surface temperature (degC) | 
| 18 | %                        C2 : Sea surface salinity (PSU) | 
| 19 | %           - FLAG = 1 : | 
| 20 | %                        C1 : Surface potential density (kg/m3) | 
| 21 | %                        C2 : Not used | 
| 22 | %           - FLAG = 2 : | 
| 23 | %                        C1 : Sea surface temperature (degC) | 
| 24 | %                        C2 : Sea surface salinity (PSU) | 
| 25 | % Qnet    : Downward net surface heat flux (W/m2) | 
| 26 | % Snet    : Downward net surface salt flux (kg/m2/s) -> | 
| 27 | %           ie, Snet = rho*beta*SSS*(E-P) | 
| 28 | % Classes : Range of outcrops to explore (eg: [20:.1:30] for potential density) | 
| 29 | % lon,lat : axis | 
| 30 | % dA      : Matrix of grid surface elements (m2) centered in (lon,lat) of Ci | 
| 31 | % | 
| 32 | % | 
| 33 | % OUTPUTS: | 
| 34 | % F(3,:)    : Transformation rate (m3/s) (from 1:Qnet, 2:Snet and 3:Total) | 
| 35 | % A         : Surface of each outcrops | 
| 36 | % D(3,:,:)  : Maps of density flux (kg/m2/s) from 1:Qnet, 2:Snet and 3:Total | 
| 37 | % CROP(:,:) : Map of the surface field used to compute outcrop's contours | 
| 38 | % | 
| 39 | % | 
| 40 | % NOTES: | 
| 41 | % - Fields are of the format: C(LAT,LON) | 
| 42 | % - The potential density is computed with the equation of state routine from | 
| 43 | %   the MITgcm called densjmd95.m | 
| 44 | %   (see: http://mitgcm.org/cgi-bin/viewcvs.cgi/MITgcm_contrib/gmaze_pv/subfct/densjmd95.m) | 
| 45 | % - Snet may be filled of NaN if not available, its F component won't computed | 
| 46 | % | 
| 47 | % | 
| 48 | % AUTHOR: | 
| 49 | % Guillaume Maze / MIT 2006 | 
| 50 | % | 
| 51 | % HISTORY: | 
| 52 | % - Revised: 06/28/2007 | 
| 53 | %            * Add option do directly give the pot. density as input | 
| 54 | %            * Add options do take SST as outcrop | 
| 55 | % - Created: 06/22/2007 | 
| 56 | % | 
| 57 | % REFERENCES: | 
| 58 | % Walin G. 1982: On the relation between sea-surface | 
| 59 | % heat flow and thermal circulation in the ocean. Tellus N24 | 
| 60 | % | 
| 61 |  | 
| 62 | % The routine is not optimized for speed but for clarity, that's why we | 
| 63 | % compute buoyancy fluxes, etc... | 
| 64 | % | 
| 65 | % TO DO: | 
| 66 | % - Fix signs in density fluxes to be correct albeit consistent with F right now | 
| 67 | % - Create options for non regular CLASS | 
| 68 | % - Create options to also compute the formation rate M | 
| 69 | % - Create options to compute an error bar | 
| 70 | % - Create check of inputs section | 
| 71 |  | 
| 72 | function varargout = diagWALIN(FLAG,C1,C2,QNET,SNET,CLASS,dA) | 
| 73 |  | 
| 74 |  | 
| 75 | % 0 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PREPROC | 
| 76 | % Variables: | 
| 77 | nlat = size(C1,1); | 
| 78 | nlon = size(C1,2); | 
| 79 | CLASS = CLASS(:); | 
| 80 |  | 
| 81 | % Determine surface fields from which we'll take outcrops contours: | 
| 82 | switch FLAG | 
| 83 |  | 
| 84 | case {0,2} % Need to compute SIGMA THETA | 
| 85 | SST = C1; | 
| 86 | SSS = C2; | 
| 87 | if FLAG == 0     % Outcrop is SIGMA THETA: | 
| 88 | OUTCROP = ST; | 
| 89 | ST = densjmd95(SSS,SST,zeros(nlat,nlon)) - 1000;  % Real surface (depth = 0) | 
| 90 | %dpt = -5; ST = densjmd95(SSS,SST,(0.09998*9.81*dpt)*ones(nlat,nlon)) - 1000; % Model surface | 
| 91 | elseif FLAG == 2 % Outcrop is SST: | 
| 92 | OUTCROP = SST; | 
| 93 | if length(find(isnan(SSS)==1)) == nlat*nlon | 
| 94 | ST = ones(nlat,nlon).*1035; | 
| 95 | else | 
| 96 | ST = densjmd95(SSS,SST,zeros(nlat,nlon)) - 1000; | 
| 97 | end | 
| 98 | end | 
| 99 |  | 
| 100 | case 1 | 
| 101 | ST = C1; % Potential density | 
| 102 | OUTCROP = ST; | 
| 103 | end | 
| 104 |  | 
| 105 | % Create a flag if we don't find salt flux: | 
| 106 | if length(find(isnan(SNET)==1)) == nlat*nlon | 
| 107 | do_ep = 0; | 
| 108 | else | 
| 109 | do_ep = 1; | 
| 110 | end | 
| 111 |  | 
| 112 | % Physical constants: | 
| 113 | g = 9.81;        % Gravity (m/s2) | 
| 114 | Cp = 3994;       % Specific heat of sea water (J/K/kg) | 
| 115 | rho0 = 1035;     % Density of reference (kg/m3) | 
| 116 | rho  = ST+1000;  % Density (kg/m3) | 
| 117 | % Thermal expansion coefficient (1/K) | 
| 118 | if exist('SST') & exist('SSS') & length(find(isnan(SSS)==1)) ~= nlat*nlon | 
| 119 | alpha = sw_alpha(SSS,SST,zeros(nlat,nlon)); | 
| 120 | else | 
| 121 | alpha = 2.*1e-4; | 
| 122 | end | 
| 123 |  | 
| 124 | %ix=200;iy=100;[SST(iy,ix),SSS(iy,ix),QNET(iy,ix),SNET(iy,ix)] | 
| 125 |  | 
| 126 | % 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BUOYANCY FLUX: b | 
| 127 | % The buoyancy flux (m/s2*m/s=m2/s3) is computed as: | 
| 128 | % b = g/rho*( alpha/Cp*QNET - SNET ) | 
| 129 | % b = g/rho*alpha/Cp*QNET - g/rho*SNET | 
| 130 | % b = b_hf + b_ep | 
| 131 | % QNET the net heat flux (W/m2) and SNET the net salt flux (kg/m2/s) | 
| 132 | b_hf =  g.*alpha./Cp.*QNET./rho; | 
| 133 | if do_ep==1,  b_ep = -g*SNET./rho; else b_ep = zeros(nlat,nlon); end | 
| 134 | b = b_hf + do_ep*b_ep; | 
| 135 |  | 
| 136 |  | 
| 137 | % 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DENSITY FLUX: bd | 
| 138 | % Buoyancy flux is transformed into density flux (kg/m3*m/s = kg/m2/s): | 
| 139 | % bd = - rho/g * b | 
| 140 | % with b the buoyancy flux | 
| 141 | bd_hf = - rho/g.*b_hf; | 
| 142 | bd_ep = - rho/g.*b_ep; | 
| 143 | bd    = - rho/g.*b; | 
| 144 |  | 
| 145 | %[bd_hf(iy,ix),bd_ep(iy,ix),bd(iy,ix)] | 
| 146 |  | 
| 147 | % 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NET MASS FLUX INTEGRATED OVER OUTCROPS: Bd | 
| 148 | % The amount of mass water flux over an outcrop is computed as: | 
| 149 | % Bd = SUM_ij bd(i,j)*dA(i,j)*MASK(i,j,OUTCROP) | 
| 150 | % with MASK(i,j,OUTCROP) = 1 where  OUTCROP(i,j)-dC/2 <=  OUTCROP(i,j) < OUTCROP(i,j)+dC/2 | 
| 151 | %                        = 0 otherwise | 
| 152 | % Outcrops are defined with an increment of: | 
| 153 | dCROP = diff(CLASS(1:2)); | 
| 154 |  | 
| 155 | switch FLAG | 
| 156 | case {0,1}, coef = 1;                 % Potential density as outcrops | 
| 157 | case 2,     coef = 1./(alpha.*rho0);  % SST as outcrops | 
| 158 | end %switch | 
| 159 |  | 
| 160 |  | 
| 161 | % Surface integral: | 
| 162 | for iC = 1 : length(CLASS) | 
| 163 | CROPc  = CLASS(iC); | 
| 164 | mask   = zeros(nlat,nlon); | 
| 165 | mask(find( (CROPc-dCROP/2 <= OUTCROP) & (OUTCROP < CROPc+dCROP/2) )) = 1; | 
| 166 | %if CROPc == 18,[CROPc-dCROP/2 CROPc+dCROP/2],global mask18,mask18=mask;end; | 
| 167 | Bd_hf(iC) = nansum(nansum(dA.*mask.*bd_hf.*coef,1),2); | 
| 168 | Bd_ep(iC) = nansum(nansum(dA.*mask.*bd_ep.*coef,1),2); | 
| 169 | Bd(iC) = nansum(nansum(dA.*mask.*bd.*coef,1),2); | 
| 170 | AA(iC) = nansum(nansum(dA.*mask,1),2); | 
| 171 | end %for iC | 
| 172 |  | 
| 173 |  | 
| 174 | % 4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TRANSFORMATION RATE: F | 
| 175 | % F is defined as the convergence/divergence of the integrated mass flux Bd. | 
| 176 | % F = Bd(CROP) / dCROP | 
| 177 | % where Bd is the mass flux over an outcrop. | 
| 178 | F_hf = Bd_hf./dCROP; | 
| 179 | F_ep = Bd_ep./dCROP; | 
| 180 | F    = Bd./dCROP; | 
| 181 |  | 
| 182 |  | 
| 183 |  | 
| 184 | % 5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OUTPUTS | 
| 185 | % Transformation rate: | 
| 186 | TRANSFORM_RATE(1,:) = F_hf; | 
| 187 | TRANSFORM_RATE(2,:) = F_ep; | 
| 188 | TRANSFORM_RATE(3,:) = F; | 
| 189 |  | 
| 190 | % Density flux: | 
| 191 | DENSITY_FLUX(1,:,:) = bd_hf; | 
| 192 | DENSITY_FLUX(2,:,:) = bd_ep; | 
| 193 | DENSITY_FLUX(3,:,:) = bd; | 
| 194 |  | 
| 195 | switch nargout | 
| 196 | case 1 | 
| 197 | varargout(1) = {TRANSFORM_RATE}; | 
| 198 | case 2 | 
| 199 | varargout(1) = {TRANSFORM_RATE}; | 
| 200 | varargout(2) = {AA}; | 
| 201 | case 3 | 
| 202 | varargout(1) = {TRANSFORM_RATE}; | 
| 203 | varargout(2) = {AA}; | 
| 204 | varargout(3) = {DENSITY_FLUX}; | 
| 205 | case 4 | 
| 206 | varargout(1) = {TRANSFORM_RATE}; | 
| 207 | varargout(2) = {AA}; | 
| 208 | varargout(3) = {DENSITY_FLUX}; | 
| 209 | varargout(4) = {OUTCROP}; | 
| 210 | end %switch |