/[MITgcm]/MITgcm_contrib/gmaze_pv/diagWALIN.m
ViewVC logotype

Annotation of /MITgcm_contrib/gmaze_pv/diagWALIN.m

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (hide annotations) (download)
Wed Sep 19 15:37:38 2007 UTC (17 years, 10 months ago) by gmaze
Branch: MAIN
CVS Tags: HEAD
General Update

1 gmaze 1.1 % [F,A,D,CROP] = diagWALIN(FLAG,C1,C2,Qnet,Snet,Classes,dA)
2     %
3     % DESCRIPTION:
4     % Compute the transformation rate of a surface outcrop class (potential
5     % density or SST) from surface net heat flux Qnet and salt flux Snet
6     % according to the Walin theory.
7     %
8     % INPUTS:
9     % FLAG : Can either be: 0, 1 or 2
10     % 0: Outcrop field is surface potential density computed
11     % from C1=SST and C2=SSS
12     % 1: Outcrop field is surface potential density given by C1
13     % 2: Outcrop field is SST and potential density is computed
14     % from C1=SST and C2=SSS
15     % C1,C2 : Depends on option FLAG:
16     % - FLAG = 0 :
17     % C1 : Sea surface temperature (degC)
18     % C2 : Sea surface salinity (PSU)
19     % - FLAG = 1 :
20     % C1 : Surface potential density (kg/m3)
21     % C2 : Not used
22     % - FLAG = 2 :
23     % C1 : Sea surface temperature (degC)
24     % C2 : Sea surface salinity (PSU)
25     % Qnet : Downward net surface heat flux (W/m2)
26     % Snet : Downward net surface salt flux (kg/m2/s) ->
27     % ie, Snet = rho*beta*SSS*(E-P)
28     % Classes : Range of outcrops to explore (eg: [20:.1:30] for potential density)
29     % lon,lat : axis
30     % dA : Matrix of grid surface elements (m2) centered in (lon,lat) of Ci
31     %
32     %
33     % OUTPUTS:
34     % F(3,:) : Transformation rate (m3/s) (from 1:Qnet, 2:Snet and 3:Total)
35     % A : Surface of each outcrops
36     % D(3,:,:) : Maps of density flux (kg/m2/s) from 1:Qnet, 2:Snet and 3:Total
37     % CROP(:,:) : Map of the surface field used to compute outcrop's contours
38     %
39     %
40     % NOTES:
41     % - Fields are of the format: C(LAT,LON)
42     % - The potential density is computed with the equation of state routine from
43     % the MITgcm called densjmd95.m
44     % (see: http://mitgcm.org/cgi-bin/viewcvs.cgi/MITgcm_contrib/gmaze_pv/subfct/densjmd95.m)
45     % - Snet may be filled of NaN if not available, its F component won't computed
46     %
47     %
48     % AUTHOR:
49     % Guillaume Maze / MIT 2006
50     %
51     % HISTORY:
52     % - Revised: 06/28/2007
53     % * Add option do directly give the pot. density as input
54     % * Add options do take SST as outcrop
55     % - Created: 06/22/2007
56     %
57     % REFERENCES:
58     % Walin G. 1982: On the relation between sea-surface
59     % heat flow and thermal circulation in the ocean. Tellus N24
60     %
61    
62     % The routine is not optimized for speed but for clarity, that's why we
63     % compute buoyancy fluxes, etc...
64     %
65     % TO DO:
66     % - Fix signs in density fluxes to be correct albeit consistent with F right now
67     % - Create options for non regular CLASS
68     % - Create options to also compute the formation rate M
69     % - Create options to compute an error bar
70     % - Create check of inputs section
71    
72     function varargout = diagWALIN(FLAG,C1,C2,QNET,SNET,CLASS,dA)
73    
74    
75     % 0 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PREPROC
76     % Variables:
77     nlat = size(C1,1);
78     nlon = size(C1,2);
79     CLASS = CLASS(:);
80    
81     % Determine surface fields from which we'll take outcrops contours:
82     switch FLAG
83    
84     case {0,2} % Need to compute SIGMA THETA
85     SST = C1;
86     SSS = C2;
87     if FLAG == 0 % Outcrop is SIGMA THETA:
88     OUTCROP = ST;
89     ST = densjmd95(SSS,SST,zeros(nlat,nlon)) - 1000; % Real surface (depth = 0)
90     %dpt = -5; ST = densjmd95(SSS,SST,(0.09998*9.81*dpt)*ones(nlat,nlon)) - 1000; % Model surface
91     elseif FLAG == 2 % Outcrop is SST:
92     OUTCROP = SST;
93     if length(find(isnan(SSS)==1)) == nlat*nlon
94     ST = ones(nlat,nlon).*1035;
95     else
96     ST = densjmd95(SSS,SST,zeros(nlat,nlon)) - 1000;
97     end
98     end
99    
100     case 1
101     ST = C1; % Potential density
102     OUTCROP = ST;
103     end
104    
105     % Create a flag if we don't find salt flux:
106     if length(find(isnan(SNET)==1)) == nlat*nlon
107     do_ep = 0;
108     else
109     do_ep = 1;
110     end
111    
112     % Physical constants:
113     g = 9.81; % Gravity (m/s2)
114     Cp = 3994; % Specific heat of sea water (J/K/kg)
115     rho0 = 1035; % Density of reference (kg/m3)
116     rho = ST+1000; % Density (kg/m3)
117     % Thermal expansion coefficient (1/K)
118     if exist('SST') & exist('SSS') & length(find(isnan(SSS)==1)) ~= nlat*nlon
119     alpha = sw_alpha(SSS,SST,zeros(nlat,nlon));
120     else
121     alpha = 2.*1e-4;
122     end
123    
124     %ix=200;iy=100;[SST(iy,ix),SSS(iy,ix),QNET(iy,ix),SNET(iy,ix)]
125    
126     % 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BUOYANCY FLUX: b
127     % The buoyancy flux (m/s2*m/s=m2/s3) is computed as:
128     % b = g/rho*( alpha/Cp*QNET - SNET )
129     % b = g/rho*alpha/Cp*QNET - g/rho*SNET
130     % b = b_hf + b_ep
131     % QNET the net heat flux (W/m2) and SNET the net salt flux (kg/m2/s)
132     b_hf = g.*alpha./Cp.*QNET./rho;
133     if do_ep==1, b_ep = -g*SNET./rho; else b_ep = zeros(nlat,nlon); end
134     b = b_hf + do_ep*b_ep;
135    
136    
137     % 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DENSITY FLUX: bd
138     % Buoyancy flux is transformed into density flux (kg/m3*m/s = kg/m2/s):
139     % bd = - rho/g * b
140     % with b the buoyancy flux
141     bd_hf = - rho/g.*b_hf;
142     bd_ep = - rho/g.*b_ep;
143     bd = - rho/g.*b;
144    
145     %[bd_hf(iy,ix),bd_ep(iy,ix),bd(iy,ix)]
146    
147     % 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NET MASS FLUX INTEGRATED OVER OUTCROPS: Bd
148     % The amount of mass water flux over an outcrop is computed as:
149     % Bd = SUM_ij bd(i,j)*dA(i,j)*MASK(i,j,OUTCROP)
150     % with MASK(i,j,OUTCROP) = 1 where OUTCROP(i,j)-dC/2 <= OUTCROP(i,j) < OUTCROP(i,j)+dC/2
151     % = 0 otherwise
152     % Outcrops are defined with an increment of:
153     dCROP = diff(CLASS(1:2));
154    
155     switch FLAG
156     case {0,1}, coef = 1; % Potential density as outcrops
157     case 2, coef = 1./(alpha.*rho0); % SST as outcrops
158     end %switch
159    
160    
161     % Surface integral:
162     for iC = 1 : length(CLASS)
163     CROPc = CLASS(iC);
164     mask = zeros(nlat,nlon);
165     mask(find( (CROPc-dCROP/2 <= OUTCROP) & (OUTCROP < CROPc+dCROP/2) )) = 1;
166     %if CROPc == 18,[CROPc-dCROP/2 CROPc+dCROP/2],global mask18,mask18=mask;end;
167     Bd_hf(iC) = nansum(nansum(dA.*mask.*bd_hf.*coef,1),2);
168     Bd_ep(iC) = nansum(nansum(dA.*mask.*bd_ep.*coef,1),2);
169     Bd(iC) = nansum(nansum(dA.*mask.*bd.*coef,1),2);
170     AA(iC) = nansum(nansum(dA.*mask,1),2);
171     end %for iC
172    
173    
174     % 4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TRANSFORMATION RATE: F
175     % F is defined as the convergence/divergence of the integrated mass flux Bd.
176     % F = Bd(CROP) / dCROP
177     % where Bd is the mass flux over an outcrop.
178     F_hf = Bd_hf./dCROP;
179     F_ep = Bd_ep./dCROP;
180     F = Bd./dCROP;
181    
182    
183    
184     % 5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OUTPUTS
185     % Transformation rate:
186     TRANSFORM_RATE(1,:) = F_hf;
187     TRANSFORM_RATE(2,:) = F_ep;
188     TRANSFORM_RATE(3,:) = F;
189    
190     % Density flux:
191     DENSITY_FLUX(1,:,:) = bd_hf;
192     DENSITY_FLUX(2,:,:) = bd_ep;
193     DENSITY_FLUX(3,:,:) = bd;
194    
195     switch nargout
196     case 1
197     varargout(1) = {TRANSFORM_RATE};
198     case 2
199     varargout(1) = {TRANSFORM_RATE};
200     varargout(2) = {AA};
201     case 3
202     varargout(1) = {TRANSFORM_RATE};
203     varargout(2) = {AA};
204     varargout(3) = {DENSITY_FLUX};
205     case 4
206     varargout(1) = {TRANSFORM_RATE};
207     varargout(2) = {AA};
208     varargout(3) = {DENSITY_FLUX};
209     varargout(4) = {OUTCROP};
210     end %switch

  ViewVC Help
Powered by ViewVC 1.1.22