| 1 |
gmaze |
1.1 |
% |
| 2 |
gmaze |
1.4 |
% [RHO] = compute_density(SNAPSHOT) |
| 3 |
gmaze |
1.1 |
% |
| 4 |
|
|
% For a time snapshot, this program computes the |
| 5 |
gmaze |
1.3 |
% 3D density from potential temperature and salinity fields. |
| 6 |
gmaze |
1.1 |
% THETA and SALTanom are supposed to be defined on the same |
| 7 |
gmaze |
1.3 |
% domain and grid. |
| 8 |
|
|
% SALTanom is by default a salinity anomaly vs 35PSU. |
| 9 |
|
|
% If not, (is absolute value) set the global variable is_SALTanom to 0 |
| 10 |
|
|
% |
| 11 |
gmaze |
1.1 |
% |
| 12 |
gmaze |
1.2 |
% Files names are: |
| 13 |
|
|
% INPUT: |
| 14 |
|
|
% ./netcdf-files/<SNAPSHOT>/<netcdf_THETA>.<netcdf_domain>.<netcdf_suff> |
| 15 |
|
|
% ./netcdf-files/<SNAPSHOT>/<netcdf_SALTanom>.<netcdf_domain>.<netcdf_suff> |
| 16 |
|
|
% OUPUT: |
| 17 |
|
|
% ./netcdf-files/<SNAPSHOT>/RHO.<netcdf_domain>.<netcdf_suff> |
| 18 |
|
|
% |
| 19 |
gmaze |
1.1 |
% 06/21/2006 |
| 20 |
|
|
% gmaze@mit.edu |
| 21 |
|
|
% |
| 22 |
|
|
|
| 23 |
|
|
|
| 24 |
gmaze |
1.4 |
function varargout = compute_density(snapshot) |
| 25 |
gmaze |
1.1 |
|
| 26 |
|
|
|
| 27 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 28 |
|
|
%% Setup |
| 29 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 30 |
|
|
global sla netcdf_THETA netcdf_SALTanom netcdf_domain netcdf_suff |
| 31 |
gmaze |
1.3 |
global is_SALTanom |
| 32 |
gmaze |
1.1 |
pv_checkpath |
| 33 |
|
|
|
| 34 |
|
|
|
| 35 |
|
|
%% THETA and SALTanom files name: |
| 36 |
|
|
filTHETA = strcat(netcdf_THETA ,'.',netcdf_domain); |
| 37 |
|
|
filSALTa = strcat(netcdf_SALTanom,'.',netcdf_domain); |
| 38 |
|
|
|
| 39 |
|
|
%% Path and extension to find them: |
| 40 |
|
|
pathname = strcat('netcdf-files',sla,snapshot); |
| 41 |
gmaze |
1.5 |
%pathname = '.'; |
| 42 |
gmaze |
1.1 |
ext = strcat('.',netcdf_suff); |
| 43 |
|
|
|
| 44 |
|
|
%% Load netcdf files: |
| 45 |
|
|
ferfile = strcat(pathname,sla,filTHETA,ext); |
| 46 |
|
|
ncTHETA = netcdf(ferfile,'nowrite'); |
| 47 |
|
|
THETAvariables = var(ncTHETA); |
| 48 |
|
|
|
| 49 |
|
|
ferfile = strcat(pathname,sla,filSALTa,ext); |
| 50 |
|
|
ncSALTa = netcdf(ferfile,'nowrite'); |
| 51 |
|
|
SALTavariables = var(ncSALTa); |
| 52 |
|
|
|
| 53 |
|
|
%% Gridding: |
| 54 |
|
|
% Don't care about the grid here ! |
| 55 |
|
|
% SALTanom and THETA are normaly defined on the same grid |
| 56 |
|
|
% So we compute rho on it. |
| 57 |
|
|
|
| 58 |
|
|
%% Flags: |
| 59 |
|
|
global toshow % Turn to 1 to follow the computing process |
| 60 |
|
|
|
| 61 |
|
|
|
| 62 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 63 |
|
|
%% Now we compute the density |
| 64 |
|
|
%% The routine used is densjmd95.m |
| 65 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 66 |
|
|
|
| 67 |
|
|
% Axis (usual netcdf files): |
| 68 |
|
|
if toshow,disp('Dim');end |
| 69 |
|
|
[lon lat dpt] = coordfromnc(ncTHETA); |
| 70 |
|
|
nx = length(lon); |
| 71 |
|
|
ny = length(lat); |
| 72 |
|
|
nz = length(dpt); |
| 73 |
|
|
|
| 74 |
|
|
% Pre-allocate: |
| 75 |
|
|
if toshow,disp('Pre-allocate');end |
| 76 |
|
|
RHO = zeros(nz,ny,nx); |
| 77 |
|
|
|
| 78 |
gmaze |
1.3 |
global is_SALTanom |
| 79 |
|
|
if exist('is_SALTanom') |
| 80 |
|
|
if is_SALTanom == 1 |
| 81 |
|
|
bS = 35; |
| 82 |
|
|
else |
| 83 |
|
|
bS = 0; |
| 84 |
|
|
end |
| 85 |
|
|
end |
| 86 |
|
|
|
| 87 |
gmaze |
1.1 |
% Then compute density RHO: |
| 88 |
|
|
for iz = 1 : nz |
| 89 |
|
|
if toshow,disp(strcat('Compute density at level:',num2str(iz),'/',num2str(nz)));end |
| 90 |
|
|
|
| 91 |
gmaze |
1.3 |
S = SALTavariables{4}(iz,:,:) + bS; % Move the anom to an absolute field |
| 92 |
gmaze |
1.1 |
T = THETAvariables{4}(iz,:,:); |
| 93 |
|
|
P = (0.09998*9.81*dpt(iz))*ones(ny,nx); |
| 94 |
|
|
RHO(iz,:,:) = densjmd95(S,T,P); |
| 95 |
|
|
|
| 96 |
|
|
end %for iz |
| 97 |
|
|
|
| 98 |
|
|
|
| 99 |
|
|
|
| 100 |
|
|
|
| 101 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 102 |
|
|
%% Record output: |
| 103 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 104 |
|
|
|
| 105 |
|
|
% General informations: |
| 106 |
|
|
netfil = strcat('RHO','.',netcdf_domain,'.',netcdf_suff); |
| 107 |
|
|
units = 'kg/m^3'; |
| 108 |
|
|
ncid = 'RHO'; |
| 109 |
|
|
longname = 'Density'; |
| 110 |
|
|
uniquename = 'density'; |
| 111 |
|
|
|
| 112 |
|
|
% Open output file: |
| 113 |
|
|
nc = netcdf(strcat(pathname,sla,netfil),'clobber'); |
| 114 |
|
|
|
| 115 |
|
|
% Define axis: |
| 116 |
|
|
nc('X') = nx; |
| 117 |
|
|
nc('Y') = ny; |
| 118 |
|
|
nc('Z') = nz; |
| 119 |
|
|
|
| 120 |
|
|
nc{'X'} = 'X'; |
| 121 |
|
|
nc{'Y'} = 'Y'; |
| 122 |
|
|
nc{'Z'} = 'Z'; |
| 123 |
|
|
|
| 124 |
|
|
nc{'X'} = ncfloat('X'); |
| 125 |
|
|
nc{'X'}.uniquename = ncchar('X'); |
| 126 |
|
|
nc{'X'}.long_name = ncchar('longitude'); |
| 127 |
|
|
nc{'X'}.gridtype = nclong(0); |
| 128 |
|
|
nc{'X'}.units = ncchar('degrees_east'); |
| 129 |
|
|
nc{'X'}(:) = lon; |
| 130 |
|
|
|
| 131 |
|
|
nc{'Y'} = ncfloat('Y'); |
| 132 |
|
|
nc{'Y'}.uniquename = ncchar('Y'); |
| 133 |
|
|
nc{'Y'}.long_name = ncchar('latitude'); |
| 134 |
|
|
nc{'Y'}.gridtype = nclong(0); |
| 135 |
|
|
nc{'Y'}.units = ncchar('degrees_north'); |
| 136 |
|
|
nc{'Y'}(:) = lat; |
| 137 |
|
|
|
| 138 |
|
|
nc{'Z'} = ncfloat('Z'); |
| 139 |
|
|
nc{'Z'}.uniquename = ncchar('Z'); |
| 140 |
|
|
nc{'Z'}.long_name = ncchar('depth'); |
| 141 |
|
|
nc{'Z'}.gridtype = nclong(0); |
| 142 |
|
|
nc{'Z'}.units = ncchar('m'); |
| 143 |
|
|
nc{'Z'}(:) = dpt; |
| 144 |
|
|
|
| 145 |
|
|
% And main field: |
| 146 |
|
|
nc{ncid} = ncfloat('Z', 'Y', 'X'); |
| 147 |
|
|
nc{ncid}.units = ncchar(units); |
| 148 |
|
|
nc{ncid}.missing_value = ncfloat(NaN); |
| 149 |
|
|
nc{ncid}.FillValue_ = ncfloat(NaN); |
| 150 |
|
|
nc{ncid}.longname = ncchar(longname); |
| 151 |
|
|
nc{ncid}.uniquename = ncchar(uniquename); |
| 152 |
|
|
nc{ncid}(:,:,:) = RHO; |
| 153 |
|
|
|
| 154 |
|
|
|
| 155 |
gmaze |
1.3 |
|
| 156 |
|
|
% Close files: |
| 157 |
|
|
close(ncTHETA); |
| 158 |
|
|
close(ncSALTa); |
| 159 |
|
|
close(nc); |
| 160 |
|
|
|
| 161 |
|
|
|
| 162 |
|
|
% Output: |
| 163 |
gmaze |
1.4 |
output = struct('RHO',RHO,'dpt',dpt,'lat',lat,'lon',lon); |
| 164 |
gmaze |
1.3 |
switch nargout |
| 165 |
|
|
case 1 |
| 166 |
gmaze |
1.4 |
varargout(1) = {output}; |
| 167 |
gmaze |
1.3 |
end |