| 1 | % | 
| 2 | % [] = compute_QEk(SNAPSHOT) | 
| 3 | % | 
| 4 | % Here we compute the lateral heat flux induced by Ekman currents | 
| 5 | % from JFz, the PV flux induced by frictional forces: | 
| 6 | % QEk = - Cw * EKL * JFz / alpha / f | 
| 7 | % where: | 
| 8 | %  Cw = 4187 J/kg/K is the specific heat of seawater | 
| 9 | %  EKL is the Ekman layer depth (m) | 
| 10 | %  JFz is the PV flux (kg/m3/s2) | 
| 11 | %  alpha = 2.5*E-4 1/K is the thermal expansion coefficient | 
| 12 | %  f = 2*OMEGA*sin(LAT) is the Coriolis parameter | 
| 13 | % | 
| 14 | % This allows a direct comparison with the net surface heat flux Qnet | 
| 15 | % which forces the surface Pv flux due to diabatic processes. | 
| 16 | % | 
| 17 | % Remind that: | 
| 18 | % JFz = ( TAUx * dSIGMATHETA/dy - TAUy * dSIGMATHETA/dx ) / RHO / EKL | 
| 19 | % | 
| 20 | % Files names are: | 
| 21 | % INPUT: | 
| 22 | % ./netcdf-files/<SNAPSHOT>/<netcdf_JFz>.<netcdf_domain>.<netcdf_suff> | 
| 23 | % ./netcdf-files/<SNAPSHOT>/<netcdf_EKL>.<netcdf_domain>.<netcdf_suff> | 
| 24 | % OUPUT: | 
| 25 | % ./netcdf-files/<SNAPSHOT>/QEk.<netcdf_domain>.<netcdf_suff> | 
| 26 | % | 
| 27 | % with netcdf_* as global variables | 
| 28 | % | 
| 29 | % 06/27/06 | 
| 30 | % gmaze@mit.edu | 
| 31 |  | 
| 32 | function QEk = compute_QEk(snapshot) | 
| 33 |  | 
| 34 | global sla toshow | 
| 35 | global netcdf_suff netcdf_domain | 
| 36 | global netcdf_JFz netcdf_EKL | 
| 37 | pv_checkpath | 
| 38 |  | 
| 39 |  | 
| 40 | % NETCDF file name: | 
| 41 | filJFz  = netcdf_JFz; | 
| 42 | filEKL  = netcdf_EKL; | 
| 43 |  | 
| 44 | % Path and extension to find them: | 
| 45 | pathname = strcat('netcdf-files',sla); | 
| 46 | ext = netcdf_suff; | 
| 47 |  | 
| 48 | % Load files: | 
| 49 | ferfile = strcat(pathname,sla,snapshot,sla,filJFz,'.',netcdf_domain,'.',ext); | 
| 50 | ncJFz   = netcdf(ferfile,'nowrite'); | 
| 51 | JFz     = ncJFz{4}(1,:,:); | 
| 52 | [JFzlon JFzlat JFzdpt] = coordfromnc(ncJFz); | 
| 53 |  | 
| 54 | ferfile = strcat(pathname,sla,snapshot,sla,filEKL,'.',netcdf_domain,'.',ext); | 
| 55 | ncEKL   = netcdf(ferfile,'nowrite'); | 
| 56 | EKL     = ncEKL{4}(1,:,:); | 
| 57 | [EKLlon EKLlat EKLdpt] = coordfromnc(ncEKL); | 
| 58 |  | 
| 59 | % Make them having same limits: | 
| 60 | % (JFz is defined with first/last points removed from the EKL grid) | 
| 61 | nx = length(JFzlon) ; | 
| 62 | ny = length(JFzlat) ; | 
| 63 | nz = length(JFzdpt) ; | 
| 64 | EKL = squeeze(EKL(2:ny+1,2:nx+1)); | 
| 65 |  | 
| 66 |  | 
| 67 | %%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 68 | % | 
| 69 | %%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 70 |  | 
| 71 | % Dim: | 
| 72 | if toshow, disp('dim'), end | 
| 73 | nx = length(JFzlon) ; | 
| 74 | ny = length(JFzlat) ; | 
| 75 | nz = length(JFzdpt) ; | 
| 76 |  | 
| 77 | % Pre-allocate: | 
| 78 | if toshow, disp('pre-allocate'), end | 
| 79 | QEk = zeros(nz,ny,nx).*NaN; | 
| 80 |  | 
| 81 | % Planetary vorticity: | 
| 82 | f = 2*(2*pi/86400)*sin(JFzlat*pi/180); | 
| 83 | [a f]=meshgrid(JFzlon,f); clear a c | 
| 84 |  | 
| 85 | % Coefficient: | 
| 86 | Cw = 4187; | 
| 87 | al = 2.5*10^(-4); % Average surface value of alpha | 
| 88 | coef = - Cw / al; | 
| 89 |  | 
| 90 | % Compute flux: | 
| 91 | QEk = coef.* EKL .* JFz ./ f; | 
| 92 |  | 
| 93 |  | 
| 94 |  | 
| 95 |  | 
| 96 |  | 
| 97 | %%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 98 | % Record | 
| 99 | %%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 100 | if toshow, disp('record'), end | 
| 101 |  | 
| 102 | % General informations: | 
| 103 | netfil     = 'QEk'; | 
| 104 | units      = 'W/m2'; | 
| 105 | ncid       = 'QEk'; | 
| 106 | longname   = 'Lateral heat flux induced by Ekman currents'; | 
| 107 | uniquename = 'QEk'; | 
| 108 |  | 
| 109 | % Open output file: | 
| 110 | nc = netcdf(strcat(pathname,sla,snapshot,sla,netfil,'.',netcdf_domain,'.',ext),'clobber'); | 
| 111 |  | 
| 112 | % Define axis: | 
| 113 | nx = length(JFzlon) ; | 
| 114 | ny = length(JFzlat) ; | 
| 115 | nz = 1 ; | 
| 116 |  | 
| 117 | nc('X') = nx; | 
| 118 | nc('Y') = ny; | 
| 119 | nc('Z') = nz; | 
| 120 |  | 
| 121 | nc{'X'}            = ncfloat('X'); | 
| 122 | nc{'X'}.uniquename = ncchar('X'); | 
| 123 | nc{'X'}.long_name  = ncchar('longitude'); | 
| 124 | nc{'X'}.gridtype   = nclong(0); | 
| 125 | nc{'X'}.units      = ncchar('degrees_east'); | 
| 126 | nc{'X'}(:)         = JFzlon; | 
| 127 |  | 
| 128 | nc{'Y'}            = ncfloat('Y'); | 
| 129 | nc{'Y'}.uniquename = ncchar('Y'); | 
| 130 | nc{'Y'}.long_name  = ncchar('latitude'); | 
| 131 | nc{'Y'}.gridtype   = nclong(0); | 
| 132 | nc{'Y'}.units      = ncchar('degrees_north'); | 
| 133 | nc{'Y'}(:)         = JFzlat; | 
| 134 |  | 
| 135 | nc{'Z'}            = ncfloat('Z'); | 
| 136 | nc{'Z'}.uniquename = ncchar('Z'); | 
| 137 | nc{'Z'}.long_name  = ncchar('depth'); | 
| 138 | nc{'Z'}.gridtype   = nclong(0); | 
| 139 | nc{'Z'}.units      = ncchar('m'); | 
| 140 | nc{'Z'}(:)         = JFzdpt(1); | 
| 141 |  | 
| 142 | % And main field: | 
| 143 | nc{ncid}               = ncfloat('Z', 'Y', 'X'); | 
| 144 | nc{ncid}.units         = ncchar(units); | 
| 145 | nc{ncid}.missing_value = ncfloat(NaN); | 
| 146 | nc{ncid}.FillValue_    = ncfloat(NaN); | 
| 147 | nc{ncid}.longname      = ncchar(longname); | 
| 148 | nc{ncid}.uniquename    = ncchar(uniquename); | 
| 149 | nc{ncid}(:,:,:)        = QEk; | 
| 150 |  | 
| 151 | nc=close(nc); | 
| 152 |  | 
| 153 |  |