| 1 |
gmaze |
1.1 |
% |
| 2 |
gmaze |
1.2 |
% [QEk] = compute_QEk(SNAPSHOT) |
| 3 |
gmaze |
1.1 |
% |
| 4 |
|
|
% Here we compute the lateral heat flux induced by Ekman currents |
| 5 |
|
|
% from JFz, the PV flux induced by frictional forces: |
| 6 |
|
|
% QEk = - Cw * EKL * JFz / alpha / f |
| 7 |
|
|
% where: |
| 8 |
|
|
% Cw = 4187 J/kg/K is the specific heat of seawater |
| 9 |
|
|
% EKL is the Ekman layer depth (m) |
| 10 |
|
|
% JFz is the PV flux (kg/m3/s2) |
| 11 |
|
|
% alpha = 2.5*E-4 1/K is the thermal expansion coefficient |
| 12 |
|
|
% f = 2*OMEGA*sin(LAT) is the Coriolis parameter |
| 13 |
|
|
% |
| 14 |
|
|
% This allows a direct comparison with the net surface heat flux Qnet |
| 15 |
|
|
% which forces the surface Pv flux due to diabatic processes. |
| 16 |
|
|
% |
| 17 |
|
|
% Remind that: |
| 18 |
|
|
% JFz = ( TAUx * dSIGMATHETA/dy - TAUy * dSIGMATHETA/dx ) / RHO / EKL |
| 19 |
|
|
% |
| 20 |
|
|
% Files names are: |
| 21 |
|
|
% INPUT: |
| 22 |
|
|
% ./netcdf-files/<SNAPSHOT>/<netcdf_JFz>.<netcdf_domain>.<netcdf_suff> |
| 23 |
|
|
% ./netcdf-files/<SNAPSHOT>/<netcdf_EKL>.<netcdf_domain>.<netcdf_suff> |
| 24 |
|
|
% OUPUT: |
| 25 |
|
|
% ./netcdf-files/<SNAPSHOT>/QEk.<netcdf_domain>.<netcdf_suff> |
| 26 |
|
|
% |
| 27 |
|
|
% with netcdf_* as global variables |
| 28 |
|
|
% |
| 29 |
|
|
% 06/27/06 |
| 30 |
|
|
% gmaze@mit.edu |
| 31 |
|
|
|
| 32 |
gmaze |
1.2 |
function varargout = compute_QEk(snapshot) |
| 33 |
gmaze |
1.1 |
|
| 34 |
|
|
global sla toshow |
| 35 |
|
|
global netcdf_suff netcdf_domain |
| 36 |
|
|
global netcdf_JFz netcdf_EKL |
| 37 |
|
|
pv_checkpath |
| 38 |
|
|
|
| 39 |
|
|
|
| 40 |
|
|
% NETCDF file name: |
| 41 |
|
|
filJFz = netcdf_JFz; |
| 42 |
|
|
filEKL = netcdf_EKL; |
| 43 |
|
|
|
| 44 |
|
|
% Path and extension to find them: |
| 45 |
|
|
pathname = strcat('netcdf-files',sla); |
| 46 |
|
|
ext = netcdf_suff; |
| 47 |
|
|
|
| 48 |
|
|
% Load files: |
| 49 |
|
|
ferfile = strcat(pathname,sla,snapshot,sla,filJFz,'.',netcdf_domain,'.',ext); |
| 50 |
|
|
ncJFz = netcdf(ferfile,'nowrite'); |
| 51 |
|
|
JFz = ncJFz{4}(1,:,:); |
| 52 |
|
|
[JFzlon JFzlat JFzdpt] = coordfromnc(ncJFz); |
| 53 |
|
|
|
| 54 |
|
|
ferfile = strcat(pathname,sla,snapshot,sla,filEKL,'.',netcdf_domain,'.',ext); |
| 55 |
|
|
ncEKL = netcdf(ferfile,'nowrite'); |
| 56 |
|
|
EKL = ncEKL{4}(1,:,:); |
| 57 |
|
|
[EKLlon EKLlat EKLdpt] = coordfromnc(ncEKL); |
| 58 |
|
|
|
| 59 |
|
|
% Make them having same limits: |
| 60 |
|
|
% (JFz is defined with first/last points removed from the EKL grid) |
| 61 |
|
|
nx = length(JFzlon) ; |
| 62 |
|
|
ny = length(JFzlat) ; |
| 63 |
|
|
nz = length(JFzdpt) ; |
| 64 |
|
|
EKL = squeeze(EKL(2:ny+1,2:nx+1)); |
| 65 |
|
|
|
| 66 |
|
|
|
| 67 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 68 |
|
|
% |
| 69 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 70 |
|
|
|
| 71 |
|
|
% Dim: |
| 72 |
|
|
if toshow, disp('dim'), end |
| 73 |
|
|
nx = length(JFzlon) ; |
| 74 |
|
|
ny = length(JFzlat) ; |
| 75 |
|
|
nz = length(JFzdpt) ; |
| 76 |
|
|
|
| 77 |
|
|
% Pre-allocate: |
| 78 |
|
|
if toshow, disp('pre-allocate'), end |
| 79 |
|
|
QEk = zeros(nz,ny,nx).*NaN; |
| 80 |
|
|
|
| 81 |
|
|
% Planetary vorticity: |
| 82 |
|
|
f = 2*(2*pi/86400)*sin(JFzlat*pi/180); |
| 83 |
|
|
[a f]=meshgrid(JFzlon,f); clear a c |
| 84 |
|
|
|
| 85 |
|
|
% Coefficient: |
| 86 |
|
|
Cw = 4187; |
| 87 |
|
|
al = 2.5*10^(-4); % Average surface value of alpha |
| 88 |
|
|
coef = - Cw / al; |
| 89 |
|
|
|
| 90 |
|
|
% Compute flux: |
| 91 |
|
|
QEk = coef.* EKL .* JFz ./ f; |
| 92 |
|
|
|
| 93 |
|
|
|
| 94 |
|
|
|
| 95 |
|
|
|
| 96 |
|
|
|
| 97 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 98 |
|
|
% Record |
| 99 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 100 |
|
|
if toshow, disp('record'), end |
| 101 |
|
|
|
| 102 |
|
|
% General informations: |
| 103 |
|
|
netfil = 'QEk'; |
| 104 |
|
|
units = 'W/m2'; |
| 105 |
|
|
ncid = 'QEk'; |
| 106 |
|
|
longname = 'Lateral heat flux induced by Ekman currents'; |
| 107 |
|
|
uniquename = 'QEk'; |
| 108 |
|
|
|
| 109 |
|
|
% Open output file: |
| 110 |
|
|
nc = netcdf(strcat(pathname,sla,snapshot,sla,netfil,'.',netcdf_domain,'.',ext),'clobber'); |
| 111 |
|
|
|
| 112 |
|
|
% Define axis: |
| 113 |
|
|
nx = length(JFzlon) ; |
| 114 |
|
|
ny = length(JFzlat) ; |
| 115 |
|
|
nz = 1 ; |
| 116 |
|
|
|
| 117 |
|
|
nc('X') = nx; |
| 118 |
|
|
nc('Y') = ny; |
| 119 |
|
|
nc('Z') = nz; |
| 120 |
|
|
|
| 121 |
|
|
nc{'X'} = ncfloat('X'); |
| 122 |
|
|
nc{'X'}.uniquename = ncchar('X'); |
| 123 |
|
|
nc{'X'}.long_name = ncchar('longitude'); |
| 124 |
|
|
nc{'X'}.gridtype = nclong(0); |
| 125 |
|
|
nc{'X'}.units = ncchar('degrees_east'); |
| 126 |
|
|
nc{'X'}(:) = JFzlon; |
| 127 |
|
|
|
| 128 |
|
|
nc{'Y'} = ncfloat('Y'); |
| 129 |
|
|
nc{'Y'}.uniquename = ncchar('Y'); |
| 130 |
|
|
nc{'Y'}.long_name = ncchar('latitude'); |
| 131 |
|
|
nc{'Y'}.gridtype = nclong(0); |
| 132 |
|
|
nc{'Y'}.units = ncchar('degrees_north'); |
| 133 |
|
|
nc{'Y'}(:) = JFzlat; |
| 134 |
|
|
|
| 135 |
|
|
nc{'Z'} = ncfloat('Z'); |
| 136 |
|
|
nc{'Z'}.uniquename = ncchar('Z'); |
| 137 |
|
|
nc{'Z'}.long_name = ncchar('depth'); |
| 138 |
|
|
nc{'Z'}.gridtype = nclong(0); |
| 139 |
|
|
nc{'Z'}.units = ncchar('m'); |
| 140 |
|
|
nc{'Z'}(:) = JFzdpt(1); |
| 141 |
|
|
|
| 142 |
|
|
% And main field: |
| 143 |
|
|
nc{ncid} = ncfloat('Z', 'Y', 'X'); |
| 144 |
|
|
nc{ncid}.units = ncchar(units); |
| 145 |
|
|
nc{ncid}.missing_value = ncfloat(NaN); |
| 146 |
|
|
nc{ncid}.FillValue_ = ncfloat(NaN); |
| 147 |
|
|
nc{ncid}.longname = ncchar(longname); |
| 148 |
|
|
nc{ncid}.uniquename = ncchar(uniquename); |
| 149 |
|
|
nc{ncid}(:,:,:) = QEk; |
| 150 |
|
|
|
| 151 |
|
|
nc=close(nc); |
| 152 |
|
|
|
| 153 |
|
|
|
| 154 |
gmaze |
1.2 |
|
| 155 |
|
|
% Output: |
| 156 |
|
|
output = struct('QEk',QEk,'lat',JFzlat,'lon',JFzlon); |
| 157 |
|
|
switch nargout |
| 158 |
|
|
case 1 |
| 159 |
|
|
varargout(1) = {output}; |
| 160 |
|
|
end |