| 1 | 
gmaze | 
1.1 | 
% | 
| 2 | 
gmaze | 
1.2 | 
% [QEk] = compute_QEk(SNAPSHOT) | 
| 3 | 
gmaze | 
1.1 | 
% | 
| 4 | 
  | 
  | 
% Here we compute the lateral heat flux induced by Ekman currents | 
| 5 | 
  | 
  | 
% from JFz, the PV flux induced by frictional forces: | 
| 6 | 
  | 
  | 
% QEk = - Cw * EKL * JFz / alpha / f | 
| 7 | 
  | 
  | 
% where: | 
| 8 | 
  | 
  | 
%  Cw = 4187 J/kg/K is the specific heat of seawater | 
| 9 | 
  | 
  | 
%  EKL is the Ekman layer depth (m) | 
| 10 | 
  | 
  | 
%  JFz is the PV flux (kg/m3/s2) | 
| 11 | 
  | 
  | 
%  alpha = 2.5*E-4 1/K is the thermal expansion coefficient | 
| 12 | 
  | 
  | 
%  f = 2*OMEGA*sin(LAT) is the Coriolis parameter | 
| 13 | 
  | 
  | 
% | 
| 14 | 
  | 
  | 
% This allows a direct comparison with the net surface heat flux Qnet | 
| 15 | 
  | 
  | 
% which forces the surface Pv flux due to diabatic processes. | 
| 16 | 
  | 
  | 
%    | 
| 17 | 
  | 
  | 
% Remind that: | 
| 18 | 
  | 
  | 
% JFz = ( TAUx * dSIGMATHETA/dy - TAUy * dSIGMATHETA/dx ) / RHO / EKL | 
| 19 | 
  | 
  | 
% | 
| 20 | 
  | 
  | 
% Files names are: | 
| 21 | 
  | 
  | 
% INPUT: | 
| 22 | 
  | 
  | 
% ./netcdf-files/<SNAPSHOT>/<netcdf_JFz>.<netcdf_domain>.<netcdf_suff> | 
| 23 | 
  | 
  | 
% ./netcdf-files/<SNAPSHOT>/<netcdf_EKL>.<netcdf_domain>.<netcdf_suff> | 
| 24 | 
  | 
  | 
% OUPUT: | 
| 25 | 
  | 
  | 
% ./netcdf-files/<SNAPSHOT>/QEk.<netcdf_domain>.<netcdf_suff> | 
| 26 | 
  | 
  | 
% | 
| 27 | 
  | 
  | 
% with netcdf_* as global variables | 
| 28 | 
  | 
  | 
% | 
| 29 | 
  | 
  | 
% 06/27/06 | 
| 30 | 
  | 
  | 
% gmaze@mit.edu | 
| 31 | 
  | 
  | 
 | 
| 32 | 
gmaze | 
1.2 | 
function varargout = compute_QEk(snapshot) | 
| 33 | 
gmaze | 
1.1 | 
 | 
| 34 | 
  | 
  | 
global sla toshow | 
| 35 | 
  | 
  | 
global netcdf_suff netcdf_domain | 
| 36 | 
  | 
  | 
global netcdf_JFz netcdf_EKL | 
| 37 | 
  | 
  | 
pv_checkpath | 
| 38 | 
  | 
  | 
 | 
| 39 | 
  | 
  | 
 | 
| 40 | 
  | 
  | 
% NETCDF file name: | 
| 41 | 
  | 
  | 
filJFz  = netcdf_JFz; | 
| 42 | 
  | 
  | 
filEKL  = netcdf_EKL; | 
| 43 | 
  | 
  | 
 | 
| 44 | 
  | 
  | 
% Path and extension to find them: | 
| 45 | 
  | 
  | 
pathname = strcat('netcdf-files',sla); | 
| 46 | 
  | 
  | 
ext = netcdf_suff; | 
| 47 | 
  | 
  | 
 | 
| 48 | 
  | 
  | 
% Load files: | 
| 49 | 
  | 
  | 
ferfile = strcat(pathname,sla,snapshot,sla,filJFz,'.',netcdf_domain,'.',ext); | 
| 50 | 
  | 
  | 
ncJFz   = netcdf(ferfile,'nowrite'); | 
| 51 | 
  | 
  | 
JFz     = ncJFz{4}(1,:,:); | 
| 52 | 
  | 
  | 
[JFzlon JFzlat JFzdpt] = coordfromnc(ncJFz); | 
| 53 | 
  | 
  | 
 | 
| 54 | 
  | 
  | 
ferfile = strcat(pathname,sla,snapshot,sla,filEKL,'.',netcdf_domain,'.',ext); | 
| 55 | 
  | 
  | 
ncEKL   = netcdf(ferfile,'nowrite'); | 
| 56 | 
  | 
  | 
EKL     = ncEKL{4}(1,:,:); | 
| 57 | 
  | 
  | 
[EKLlon EKLlat EKLdpt] = coordfromnc(ncEKL); | 
| 58 | 
  | 
  | 
 | 
| 59 | 
  | 
  | 
% Make them having same limits: | 
| 60 | 
  | 
  | 
% (JFz is defined with first/last points removed from the EKL grid) | 
| 61 | 
  | 
  | 
nx = length(JFzlon) ; | 
| 62 | 
  | 
  | 
ny = length(JFzlat) ; | 
| 63 | 
  | 
  | 
nz = length(JFzdpt) ; | 
| 64 | 
  | 
  | 
EKL = squeeze(EKL(2:ny+1,2:nx+1)); | 
| 65 | 
  | 
  | 
 | 
| 66 | 
  | 
  | 
 | 
| 67 | 
  | 
  | 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 68 | 
  | 
  | 
%  | 
| 69 | 
  | 
  | 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 70 | 
  | 
  | 
 | 
| 71 | 
  | 
  | 
% Dim: | 
| 72 | 
  | 
  | 
if toshow, disp('dim'), end | 
| 73 | 
  | 
  | 
nx = length(JFzlon) ; | 
| 74 | 
  | 
  | 
ny = length(JFzlat) ; | 
| 75 | 
  | 
  | 
nz = length(JFzdpt) ; | 
| 76 | 
  | 
  | 
 | 
| 77 | 
  | 
  | 
% Pre-allocate: | 
| 78 | 
  | 
  | 
if toshow, disp('pre-allocate'), end | 
| 79 | 
  | 
  | 
QEk = zeros(nz,ny,nx).*NaN; | 
| 80 | 
  | 
  | 
 | 
| 81 | 
  | 
  | 
% Planetary vorticity: | 
| 82 | 
  | 
  | 
f = 2*(2*pi/86400)*sin(JFzlat*pi/180); | 
| 83 | 
  | 
  | 
[a f]=meshgrid(JFzlon,f); clear a c | 
| 84 | 
  | 
  | 
 | 
| 85 | 
  | 
  | 
% Coefficient: | 
| 86 | 
  | 
  | 
Cw = 4187; | 
| 87 | 
  | 
  | 
al = 2.5*10^(-4); % Average surface value of alpha | 
| 88 | 
  | 
  | 
coef = - Cw / al; | 
| 89 | 
  | 
  | 
 | 
| 90 | 
  | 
  | 
% Compute flux: | 
| 91 | 
  | 
  | 
QEk = coef.* EKL .* JFz ./ f; | 
| 92 | 
  | 
  | 
 | 
| 93 | 
  | 
  | 
 | 
| 94 | 
  | 
  | 
 | 
| 95 | 
  | 
  | 
 | 
| 96 | 
  | 
  | 
 | 
| 97 | 
  | 
  | 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 98 | 
  | 
  | 
% Record | 
| 99 | 
  | 
  | 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 100 | 
  | 
  | 
if toshow, disp('record'), end | 
| 101 | 
  | 
  | 
 | 
| 102 | 
  | 
  | 
% General informations:  | 
| 103 | 
  | 
  | 
netfil     = 'QEk'; | 
| 104 | 
  | 
  | 
units      = 'W/m2'; | 
| 105 | 
  | 
  | 
ncid       = 'QEk'; | 
| 106 | 
  | 
  | 
longname   = 'Lateral heat flux induced by Ekman currents'; | 
| 107 | 
  | 
  | 
uniquename = 'QEk'; | 
| 108 | 
  | 
  | 
 | 
| 109 | 
  | 
  | 
% Open output file: | 
| 110 | 
  | 
  | 
nc = netcdf(strcat(pathname,sla,snapshot,sla,netfil,'.',netcdf_domain,'.',ext),'clobber'); | 
| 111 | 
  | 
  | 
 | 
| 112 | 
  | 
  | 
% Define axis: | 
| 113 | 
  | 
  | 
nx = length(JFzlon) ; | 
| 114 | 
  | 
  | 
ny = length(JFzlat) ; | 
| 115 | 
  | 
  | 
nz = 1 ; | 
| 116 | 
  | 
  | 
 | 
| 117 | 
  | 
  | 
nc('X') = nx; | 
| 118 | 
  | 
  | 
nc('Y') = ny; | 
| 119 | 
  | 
  | 
nc('Z') = nz; | 
| 120 | 
  | 
  | 
  | 
| 121 | 
  | 
  | 
nc{'X'}            = ncfloat('X'); | 
| 122 | 
  | 
  | 
nc{'X'}.uniquename = ncchar('X'); | 
| 123 | 
  | 
  | 
nc{'X'}.long_name  = ncchar('longitude'); | 
| 124 | 
  | 
  | 
nc{'X'}.gridtype   = nclong(0); | 
| 125 | 
  | 
  | 
nc{'X'}.units      = ncchar('degrees_east'); | 
| 126 | 
  | 
  | 
nc{'X'}(:)         = JFzlon; | 
| 127 | 
  | 
  | 
  | 
| 128 | 
  | 
  | 
nc{'Y'}            = ncfloat('Y');  | 
| 129 | 
  | 
  | 
nc{'Y'}.uniquename = ncchar('Y'); | 
| 130 | 
  | 
  | 
nc{'Y'}.long_name  = ncchar('latitude'); | 
| 131 | 
  | 
  | 
nc{'Y'}.gridtype   = nclong(0); | 
| 132 | 
  | 
  | 
nc{'Y'}.units      = ncchar('degrees_north'); | 
| 133 | 
  | 
  | 
nc{'Y'}(:)         = JFzlat; | 
| 134 | 
  | 
  | 
  | 
| 135 | 
  | 
  | 
nc{'Z'}            = ncfloat('Z'); | 
| 136 | 
  | 
  | 
nc{'Z'}.uniquename = ncchar('Z'); | 
| 137 | 
  | 
  | 
nc{'Z'}.long_name  = ncchar('depth'); | 
| 138 | 
  | 
  | 
nc{'Z'}.gridtype   = nclong(0); | 
| 139 | 
  | 
  | 
nc{'Z'}.units      = ncchar('m'); | 
| 140 | 
  | 
  | 
nc{'Z'}(:)         = JFzdpt(1); | 
| 141 | 
  | 
  | 
  | 
| 142 | 
  | 
  | 
% And main field: | 
| 143 | 
  | 
  | 
nc{ncid}               = ncfloat('Z', 'Y', 'X');  | 
| 144 | 
  | 
  | 
nc{ncid}.units         = ncchar(units); | 
| 145 | 
  | 
  | 
nc{ncid}.missing_value = ncfloat(NaN); | 
| 146 | 
  | 
  | 
nc{ncid}.FillValue_    = ncfloat(NaN); | 
| 147 | 
  | 
  | 
nc{ncid}.longname      = ncchar(longname); | 
| 148 | 
  | 
  | 
nc{ncid}.uniquename    = ncchar(uniquename); | 
| 149 | 
  | 
  | 
nc{ncid}(:,:,:)        = QEk; | 
| 150 | 
  | 
  | 
 | 
| 151 | 
  | 
  | 
nc=close(nc); | 
| 152 | 
  | 
  | 
 | 
| 153 | 
  | 
  | 
 | 
| 154 | 
gmaze | 
1.2 | 
 | 
| 155 | 
  | 
  | 
% Output: | 
| 156 | 
  | 
  | 
output = struct('QEk',QEk,'lat',JFzlat,'lon',JFzlon); | 
| 157 | 
  | 
  | 
switch nargout | 
| 158 | 
  | 
  | 
 case 1 | 
| 159 | 
  | 
  | 
  varargout(1) = {output}; | 
| 160 | 
  | 
  | 
end |