| 1 | % | 
| 2 | % [MLD] = compute_MLD(SNAPSHOT) | 
| 3 | % | 
| 4 | % Here we compute the Mixed Layer Depth as: | 
| 5 | % MLD = min depth for which : ST > ST(SSS,SST-0.8,p0) | 
| 6 | % | 
| 7 | % where: | 
| 8 | %  ST is potential density (kg/m3) | 
| 9 | %  SST the Sea Surface Temperature (oC) | 
| 10 | %  SSS the Sea Surface Salinity (PSU-35) | 
| 11 | %  p0  the Sea Level Pressure (mb) | 
| 12 | %  EKL is the Ekman layer depth (m, positive) | 
| 13 | % | 
| 14 | % Files names are: | 
| 15 | % INPUT: | 
| 16 | % ./netcdf-files/<SNAPSHOT>/<netcdf_SIGMATHETA>.<netcdf_domain>.<netcdf_suff> | 
| 17 | % ./netcdf-files/<SNAPSHOT>/<netcdf_THETA>.<netcdf_domain>.<netcdf_suff> | 
| 18 | % ./netcdf-files/<SNAPSHOT>/<netcdf_SALTanom>.<netcdf_domain>.<netcdf_suff> | 
| 19 | % OUTPUT | 
| 20 | % ./netcdf-files/<SNAPSHOT>/<netcdf_MLD>.<netcdf_domain>.<netcdf_suff> | 
| 21 | % | 
| 22 | % with netcdf_* as global variables | 
| 23 | % netcdf_MLD = 'MLD' by default | 
| 24 | % | 
| 25 | % Rq: This method leads to a MLD deeper than KPPmld in the middle of the | 
| 26 | % ocean, and shallower along the coast. | 
| 27 | % | 
| 28 | % 09/20/06 | 
| 29 | % gmaze@mit.edu | 
| 30 |  | 
| 31 | function varargout = compute_MLD(snapshot) | 
| 32 |  | 
| 33 | global sla toshow | 
| 34 | global netcdf_suff netcdf_domain | 
| 35 | global netcdf_SIGMATHETA netcdf_THETA netcdf_SALTanom netcdf_MLD | 
| 36 | pv_checkpath | 
| 37 |  | 
| 38 |  | 
| 39 | % NETCDF file name: | 
| 40 | filST = netcdf_SIGMATHETA; | 
| 41 | filT  = netcdf_THETA; | 
| 42 | filS  = netcdf_SALTanom; | 
| 43 |  | 
| 44 | % Path and extension to find them: | 
| 45 | pathname = strcat('netcdf-files',sla); | 
| 46 | ext = netcdf_suff; | 
| 47 |  | 
| 48 | % Load files: | 
| 49 | ferfile = strcat(pathname,sla,snapshot,sla,filST,'.',netcdf_domain,'.',ext); | 
| 50 | ncST    = netcdf(ferfile,'nowrite'); | 
| 51 | ST      = ncST{4}(:,:,:); | 
| 52 | [STlon STlat STdpt] = coordfromnc(ncST); | 
| 53 |  | 
| 54 | ferfile = strcat(pathname,sla,snapshot,sla,filT,'.',netcdf_domain,'.',ext); | 
| 55 | ncT    = netcdf(ferfile,'nowrite'); | 
| 56 | SST      = ncT{4}(1,:,:); | 
| 57 | [Tlon Tlat Tdpt] = coordfromnc(ncT); | 
| 58 |  | 
| 59 | ferfile = strcat(pathname,sla,snapshot,sla,filS,'.',netcdf_domain,'.',ext); | 
| 60 | ncS   = netcdf(ferfile,'nowrite'); | 
| 61 | SSS     = ncS{4}(1,:,:); | 
| 62 | [Slon Slat Sdpt] = coordfromnc(ncS); | 
| 63 |  | 
| 64 |  | 
| 65 | %%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 66 | % COMPUTE The Mixed Layer Depth: | 
| 67 | %%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 68 | if toshow, disp('pre-allocate'), end | 
| 69 | nx = length(STlon); | 
| 70 | ny = length(STlat); | 
| 71 | SST08 = SST - 0.8; | 
| 72 | SSS   = SSS + 35; | 
| 73 | Surfadens08 = densjmd95(SSS,SST08,(0.09998*9.81*Tdpt(1))*ones(ny,nx))-1000; | 
| 74 | MLD = zeros(size(ST,2),size(ST,3)); | 
| 75 |  | 
| 76 | if toshow, disp('get MLD'), end | 
| 77 | for iy = 1 : size(ST,2) | 
| 78 | for ix = 1 : size(ST,3) | 
| 79 | mm =  find( squeeze(ST(:,iy,ix)) > Surfadens08(iy,ix) ); | 
| 80 | if ~isempty(mm) | 
| 81 | MLD(iy,ix) = STdpt(min(mm)); | 
| 82 | end | 
| 83 | %end | 
| 84 | end | 
| 85 | end | 
| 86 |  | 
| 87 | MLD(isnan(squeeze(ST(1,:,:)))) = NaN; | 
| 88 |  | 
| 89 |  | 
| 90 | %%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 91 | % Ensure we have the right sign (positive) | 
| 92 | mm = nanmean(nanmean(MLD,1)); | 
| 93 | if mm <= 0 | 
| 94 | MLD = -MLD; | 
| 95 | end | 
| 96 |  | 
| 97 |  | 
| 98 |  | 
| 99 | %%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 100 | % Record | 
| 101 | %%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 102 | if toshow, disp('record'), end | 
| 103 |  | 
| 104 | % General informations: | 
| 105 | if ~isempty('netcdf_MLD') | 
| 106 | netfil = netcdf_MLD; | 
| 107 | else | 
| 108 | netfil = 'MLD'; | 
| 109 | end | 
| 110 | units      = 'm'; | 
| 111 | ncid       = 'MLD'; | 
| 112 | longname   = 'Mixed Layer Depth'; | 
| 113 | uniquename = 'MLD'; | 
| 114 |  | 
| 115 | % Open output file: | 
| 116 | nc = netcdf(strcat(pathname,sla,snapshot,sla,netfil,'.',netcdf_domain,'.',ext),'clobber'); | 
| 117 |  | 
| 118 | % Define axis: | 
| 119 | nx = length(STlon) ; | 
| 120 | ny = length(STlat) ; | 
| 121 | nz = 1 ; | 
| 122 |  | 
| 123 | nc('X') = nx; | 
| 124 | nc('Y') = ny; | 
| 125 | nc('Z') = nz; | 
| 126 |  | 
| 127 | nc{'X'}            = ncfloat('X'); | 
| 128 | nc{'X'}.uniquename = ncchar('X'); | 
| 129 | nc{'X'}.long_name  = ncchar('longitude'); | 
| 130 | nc{'X'}.gridtype   = nclong(0); | 
| 131 | nc{'X'}.units      = ncchar('degrees_east'); | 
| 132 | nc{'X'}(:)         = STlon; | 
| 133 |  | 
| 134 | nc{'Y'}            = ncfloat('Y'); | 
| 135 | nc{'Y'}.uniquename = ncchar('Y'); | 
| 136 | nc{'Y'}.long_name  = ncchar('latitude'); | 
| 137 | nc{'Y'}.gridtype   = nclong(0); | 
| 138 | nc{'Y'}.units      = ncchar('degrees_north'); | 
| 139 | nc{'Y'}(:)         = STlat; | 
| 140 |  | 
| 141 | nc{'Z'}            = ncfloat('Z'); | 
| 142 | nc{'Z'}.uniquename = ncchar('Z'); | 
| 143 | nc{'Z'}.long_name  = ncchar('depth'); | 
| 144 | nc{'Z'}.gridtype   = nclong(0); | 
| 145 | nc{'Z'}.units      = ncchar('m'); | 
| 146 | nc{'Z'}(:)         = STdpt(1); | 
| 147 |  | 
| 148 | % And main field: | 
| 149 | nc{ncid}               = ncfloat('Z', 'Y', 'X'); | 
| 150 | nc{ncid}.units         = ncchar(units); | 
| 151 | nc{ncid}.missing_value = ncfloat(NaN); | 
| 152 | nc{ncid}.FillValue_    = ncfloat(NaN); | 
| 153 | nc{ncid}.longname      = ncchar(longname); | 
| 154 | nc{ncid}.uniquename    = ncchar(uniquename); | 
| 155 | nc{ncid}(:,:,:)        = MLD; | 
| 156 |  | 
| 157 | nc=close(nc); | 
| 158 | close(ncST); | 
| 159 | close(ncS); | 
| 160 | close(ncT); | 
| 161 |  | 
| 162 |  | 
| 163 | % Output: | 
| 164 | output = struct('MLD',MLD,'lat',STlat,'lon',STlon); | 
| 165 | switch nargout | 
| 166 | case 1 | 
| 167 | varargout(1) = {output}; | 
| 168 | end |