| 1 | 
% | 
| 2 | 
% [JFzx] = compute_JFzx(SNAPSHOT) | 
| 3 | 
% | 
| 4 | 
% Here we compute the PV flux due to the zonal frictionnal force as | 
| 5 | 
% JFzx = ( TAUx * dSIGMATHETA/dy ) / RHO / EKL | 
| 6 | 
% | 
| 7 | 
% where: | 
| 8 | 
%  TAUx is the surface zonal wind-stress (N/m2) | 
| 9 | 
%  SIGMATHETA is the potential density (kg/m3) | 
| 10 | 
%  RHO is the density (kg/m3) | 
| 11 | 
%  EKL is the Ekman layer depth (m, positive) | 
| 12 | 
% | 
| 13 | 
% Files names are: | 
| 14 | 
% INPUT: | 
| 15 | 
% ./netcdf-files/<SNAPSHOT>/<netcdf_SIGMATHETA>.<netcdf_domain>.<netcdf_suff> | 
| 16 | 
% ./netcdf-files/<SNAPSHOT>/<netcdf_TAUX>.<netcdf_domain>.<netcdf_suff> | 
| 17 | 
% ./netcdf-files/<SNAPSHOT>/<netcdf_RHO>.<netcdf_domain>.<netcdf_suff> | 
| 18 | 
% ./netcdf-files/<SNAPSHOT>/<netcdf_EKL>.<netcdf_domain>.<netcdf_suff> | 
| 19 | 
% OUTPUT: | 
| 20 | 
% ./netcdf-files/<SNAPSHOT>/JFzx.<netcdf_domain>.<netcdf_suff> | 
| 21 | 
%  | 
| 22 | 
% with netcdf_* as global variables | 
| 23 | 
% | 
| 24 | 
% 06/04/12 | 
| 25 | 
% gmaze@mit.edu | 
| 26 | 
 | 
| 27 | 
function varargout = compute_JFzx(snapshot) | 
| 28 | 
 | 
| 29 | 
global sla toshow | 
| 30 | 
global netcdf_suff netcdf_domain | 
| 31 | 
global netcdf_TAUX netcdf_SIGMATHETA netcdf_EKL netcdf_RHO | 
| 32 | 
pv_checkpath | 
| 33 | 
 | 
| 34 | 
 | 
| 35 | 
% NETCDF file name: | 
| 36 | 
filST  = netcdf_SIGMATHETA; | 
| 37 | 
filTx  = netcdf_TAUX; | 
| 38 | 
filRHO = netcdf_RHO; | 
| 39 | 
filH   = netcdf_EKL; | 
| 40 | 
 | 
| 41 | 
% Path and extension to find them: | 
| 42 | 
pathname = strcat('netcdf-files',sla); | 
| 43 | 
ext = netcdf_suff; | 
| 44 | 
 | 
| 45 | 
% Load files: | 
| 46 | 
ferfile = strcat(pathname,sla,snapshot,sla,filST,'.',netcdf_domain,'.',ext); | 
| 47 | 
ncST     = netcdf(ferfile,'nowrite'); | 
| 48 | 
[STlon STlat STdpt] = coordfromnc(ncST); | 
| 49 | 
 | 
| 50 | 
ferfile = strcat(pathname,sla,snapshot,sla,filTx,'.',netcdf_domain,'.',ext); | 
| 51 | 
ncTx    = netcdf(ferfile,'nowrite'); | 
| 52 | 
 | 
| 53 | 
ferfile = strcat(pathname,sla,snapshot,sla,filRHO,'.',netcdf_domain,'.',ext); | 
| 54 | 
ncRHO   = netcdf(ferfile,'nowrite'); | 
| 55 | 
RHO     = ncRHO{4}(1,:,:); | 
| 56 | 
 | 
| 57 | 
ferfile = strcat(pathname,sla,snapshot,sla,filH,'.',netcdf_domain,'.',ext); | 
| 58 | 
ncH     = netcdf(ferfile,'nowrite'); | 
| 59 | 
EKL     = ncH{4}(1,:,:); | 
| 60 | 
 | 
| 61 | 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 62 | 
% First term | 
| 63 | 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 64 | 
 | 
| 65 | 
% Dim: | 
| 66 | 
if toshow, disp('dim'), end | 
| 67 | 
nx = length(STlon) ; | 
| 68 | 
ny = length(STlat) - 1 ; | 
| 69 | 
 | 
| 70 | 
% Pre-allocate: | 
| 71 | 
if toshow, disp('pre-allocate'), end | 
| 72 | 
dSIGMATHETAdy = zeros(ny-1,nx).*NaN; | 
| 73 | 
dy        = zeros(1,ny).*NaN; | 
| 74 | 
STup      = zeros(1,ny); | 
| 75 | 
STdw      = zeros(1,ny); | 
| 76 | 
 | 
| 77 | 
% Meridional gradient of SIGMATHETA: | 
| 78 | 
if toshow, disp('grad'), end | 
| 79 | 
% Assuming the grid is regular, dy is independent of x: | 
| 80 | 
dy = m_lldist([1 1]*STlon(1),STlat(1:ny+1) ) ;  | 
| 81 | 
for ix = 1 : nx | 
| 82 | 
  if toshow, disp(strcat(num2str(ix),'/',num2str(nx))), end | 
| 83 | 
  STup  = squeeze(ncST{4}(1,2:ny+1,ix)); | 
| 84 | 
  STdw  = squeeze(ncST{4}(1,1:ny,ix)); | 
| 85 | 
  dSTdy = ( STup - STdw ) ./ dy; | 
| 86 | 
  % Change horizontal grid point definition to fit with SIGMATHETA: | 
| 87 | 
  dSTdy = ( dSTdy(1:ny-1) + dSTdy(2:ny) )./2;  | 
| 88 | 
  dSIGMATHETAdy(:,ix) = dSTdy; | 
| 89 | 
end %for iy | 
| 90 | 
 | 
| 91 | 
% Make TAUx having same limits: | 
| 92 | 
TAUx = ncTx{4}(1,2:ny,:); | 
| 93 | 
 | 
| 94 | 
% Compute first term: TAUx * dSIGMATHETA/dy | 
| 95 | 
JFz_a = TAUx .* dSIGMATHETAdy ; | 
| 96 | 
 | 
| 97 | 
 | 
| 98 | 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 99 | 
% Finish ... | 
| 100 | 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 101 | 
% Then make all terms having same limits: | 
| 102 | 
nx = length(STlon) ; | 
| 103 | 
ny = length(STlat) ; | 
| 104 | 
JFz_a   = squeeze(JFz_a(:,2:nx-1)); | 
| 105 | 
delta_e = squeeze(EKL(2:ny-1,2:nx-1)); | 
| 106 | 
rho     = squeeze(RHO(2:ny-1,2:nx-1)); | 
| 107 | 
 | 
| 108 | 
% and finish: | 
| 109 | 
JFz = JFz_a./delta_e./rho; | 
| 110 | 
 | 
| 111 | 
 | 
| 112 | 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 113 | 
% Record | 
| 114 | 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 115 | 
if toshow, disp('record'), end | 
| 116 | 
 | 
| 117 | 
% General informations:  | 
| 118 | 
netfil     = 'JFzx'; | 
| 119 | 
units      = 'kg/m3/s2'; | 
| 120 | 
ncid       = 'JFzx'; | 
| 121 | 
longname   = 'Vertical PV flux due to the zonal frictional force'; | 
| 122 | 
uniquename = 'JFzx'; | 
| 123 | 
 | 
| 124 | 
% Open output file: | 
| 125 | 
nc = netcdf(strcat(pathname,sla,snapshot,sla,netfil,'.',netcdf_domain,'.',ext),'clobber'); | 
| 126 | 
 | 
| 127 | 
% Define axis: | 
| 128 | 
nx = length(STlon) ; | 
| 129 | 
ny = length(STlat) ; | 
| 130 | 
nz = 1 ; | 
| 131 | 
 | 
| 132 | 
nc('X') = nx-2; | 
| 133 | 
nc('Y') = ny-2; | 
| 134 | 
nc('Z') = nz; | 
| 135 | 
  | 
| 136 | 
nc{'X'}            = ncfloat('X'); | 
| 137 | 
nc{'X'}.uniquename = ncchar('X'); | 
| 138 | 
nc{'X'}.long_name  = ncchar('longitude'); | 
| 139 | 
nc{'X'}.gridtype   = nclong(0); | 
| 140 | 
nc{'X'}.units      = ncchar('degrees_east'); | 
| 141 | 
nc{'X'}(:)         = STlon(2:nx-1); | 
| 142 | 
  | 
| 143 | 
nc{'Y'}            = ncfloat('Y');  | 
| 144 | 
nc{'Y'}.uniquename = ncchar('Y'); | 
| 145 | 
nc{'Y'}.long_name  = ncchar('latitude'); | 
| 146 | 
nc{'Y'}.gridtype   = nclong(0); | 
| 147 | 
nc{'Y'}.units      = ncchar('degrees_north'); | 
| 148 | 
nc{'Y'}(:)         = STlat(2:ny-1); | 
| 149 | 
  | 
| 150 | 
nc{'Z'}            = ncfloat('Z'); | 
| 151 | 
nc{'Z'}.uniquename = ncchar('Z'); | 
| 152 | 
nc{'Z'}.long_name  = ncchar('depth'); | 
| 153 | 
nc{'Z'}.gridtype   = nclong(0); | 
| 154 | 
nc{'Z'}.units      = ncchar('m'); | 
| 155 | 
nc{'Z'}(:)         = STdpt(1); | 
| 156 | 
  | 
| 157 | 
% And main field: | 
| 158 | 
nc{ncid}               = ncfloat('Z', 'Y', 'X');  | 
| 159 | 
nc{ncid}.units         = ncchar(units); | 
| 160 | 
nc{ncid}.missing_value = ncfloat(NaN); | 
| 161 | 
nc{ncid}.FillValue_    = ncfloat(NaN); | 
| 162 | 
nc{ncid}.longname      = ncchar(longname); | 
| 163 | 
nc{ncid}.uniquename    = ncchar(uniquename); | 
| 164 | 
nc{ncid}(:,:,:)        = JFz; | 
| 165 | 
 | 
| 166 | 
 | 
| 167 | 
 | 
| 168 | 
%%% Close files: | 
| 169 | 
close(ncST); | 
| 170 | 
close(ncTx); | 
| 171 | 
close(ncRHO); | 
| 172 | 
close(ncH); | 
| 173 | 
close(nc); | 
| 174 | 
 | 
| 175 | 
% Output: | 
| 176 | 
output = struct('JFzx',JFz,'lat',STlat(2:ny-1),'lon',STlon(2:nx-1)); | 
| 177 | 
switch nargout | 
| 178 | 
 case 1 | 
| 179 | 
  varargout(1) = {output}; | 
| 180 | 
end |