1 |
% |
% |
2 |
% [] = compute_JFz(SNAPSHOT) |
% [JFz] = compute_JFz(SNAPSHOT) |
3 |
% |
% |
4 |
% Here we compute the PV flux due to frictionnal forces as |
% Here we compute the PV flux due to frictionnal forces as |
5 |
% JFz = ( TAUx * dSIGMATHETA/dy - TAUy * dSIGMATHETA/dx ) / RHO / EKL |
% JFz = ( TAUx * dSIGMATHETA/dy - TAUy * dSIGMATHETA/dx ) / RHO / EKL |
8 |
% TAU is the surface wind-stress (N/m2) |
% TAU is the surface wind-stress (N/m2) |
9 |
% SIGMATHETA is the potential density (kg/m3) |
% SIGMATHETA is the potential density (kg/m3) |
10 |
% RHO is the density (kg/m3) |
% RHO is the density (kg/m3) |
11 |
% EKL is the Ekman layer depth (m) |
% EKL is the Ekman layer depth (m, positive) |
12 |
% |
% |
13 |
% Files names are: |
% Files names are: |
14 |
% INPUT: |
% INPUT: |
25 |
% 06/27/06 |
% 06/27/06 |
26 |
% gmaze@mit.edu |
% gmaze@mit.edu |
27 |
|
|
28 |
function compute_JFz(snapshot) |
function varargout = compute_JFz(snapshot) |
29 |
|
|
30 |
global sla toshow |
global sla toshow |
31 |
global netcdf_suff netcdf_domain |
global netcdf_suff netcdf_domain |
216 |
nc=close(nc); |
nc=close(nc); |
217 |
|
|
218 |
|
|
219 |
|
% Output: |
220 |
|
output = struct('JFz',JFz,'lat',STlat(2:ny-1),'lon',STlon(2:nx-1)); |
221 |
|
switch nargout |
222 |
|
case 1 |
223 |
|
varargout(1) = {output}; |
224 |
|
end |