| 1 | gmaze | 1.1 | % | 
| 2 |  |  | % [] = compute_JFz(SNAPSHOT) | 
| 3 |  |  | % | 
| 4 |  |  | % Here we compute the PV flux due to frictionnal forces as | 
| 5 |  |  | % JFz = ( TAUx * dSIGMATHETA/dy - TAUy * dSIGMATHETA/dx ) / RHO / EKL | 
| 6 |  |  | % | 
| 7 |  |  | % where: | 
| 8 |  |  | %  TAU is the surface wind-stress (N/m2) | 
| 9 |  |  | %  SIGMATHETA is the potential density (kg/m3) | 
| 10 |  |  | %  RHO is the density (kg/m3) | 
| 11 | gmaze | 1.2 | %  EKL is the Ekman layer depth (m, positive) | 
| 12 | gmaze | 1.1 | % | 
| 13 |  |  | % Files names are: | 
| 14 |  |  | % INPUT: | 
| 15 |  |  | % ./netcdf-files/<SNAPSHOT>/<netcdf_SIGMATHETA>.<netcdf_domain>.<netcdf_suff> | 
| 16 |  |  | % ./netcdf-files/<SNAPSHOT>/<netcdf_TAUX>.<netcdf_domain>.<netcdf_suff> | 
| 17 |  |  | % ./netcdf-files/<SNAPSHOT>/<netcdf_TAUY>.<netcdf_domain>.<netcdf_suff> | 
| 18 |  |  | % ./netcdf-files/<SNAPSHOT>/<netcdf_RHO>.<netcdf_domain>.<netcdf_suff> | 
| 19 |  |  | % ./netcdf-files/<SNAPSHOT>/<netcdf_EKL>.<netcdf_domain>.<netcdf_suff> | 
| 20 |  |  | % OUTPUT: | 
| 21 |  |  | % ./netcdf-files/<SNAPSHOT>/JFz.<netcdf_domain>.<netcdf_suff> | 
| 22 |  |  | % | 
| 23 |  |  | % with netcdf_* as global variables | 
| 24 |  |  | % | 
| 25 |  |  | % 06/27/06 | 
| 26 |  |  | % gmaze@mit.edu | 
| 27 |  |  |  | 
| 28 |  |  | function compute_JFz(snapshot) | 
| 29 |  |  |  | 
| 30 |  |  | global sla toshow | 
| 31 |  |  | global netcdf_suff netcdf_domain | 
| 32 |  |  | global netcdf_TAUX netcdf_TAUY netcdf_SIGMATHETA netcdf_EKL netcdf_RHO | 
| 33 |  |  | pv_checkpath | 
| 34 |  |  |  | 
| 35 |  |  |  | 
| 36 |  |  | % NETCDF file name: | 
| 37 |  |  | filST  = netcdf_SIGMATHETA; | 
| 38 |  |  | filTx  = netcdf_TAUX; | 
| 39 |  |  | filTy  = netcdf_TAUY; | 
| 40 |  |  | filRHO = netcdf_RHO; | 
| 41 |  |  | filH   = netcdf_EKL; | 
| 42 |  |  |  | 
| 43 |  |  | % Path and extension to find them: | 
| 44 |  |  | pathname = strcat('netcdf-files',sla); | 
| 45 |  |  | ext = netcdf_suff; | 
| 46 |  |  |  | 
| 47 |  |  | % Load files: | 
| 48 |  |  | ferfile = strcat(pathname,sla,snapshot,sla,filST,'.',netcdf_domain,'.',ext); | 
| 49 |  |  | ncST     = netcdf(ferfile,'nowrite'); | 
| 50 |  |  | [STlon STlat STdpt] = coordfromnc(ncST); | 
| 51 |  |  |  | 
| 52 |  |  | ferfile = strcat(pathname,sla,snapshot,sla,filTx,'.',netcdf_domain,'.',ext); | 
| 53 |  |  | ncTx    = netcdf(ferfile,'nowrite'); | 
| 54 |  |  | ferfile = strcat(pathname,sla,snapshot,sla,filTy,'.',netcdf_domain,'.',ext); | 
| 55 |  |  | ncTy    = netcdf(ferfile,'nowrite'); | 
| 56 |  |  |  | 
| 57 |  |  | ferfile = strcat(pathname,sla,snapshot,sla,filRHO,'.',netcdf_domain,'.',ext); | 
| 58 |  |  | ncRHO   = netcdf(ferfile,'nowrite'); | 
| 59 |  |  | RHO     = ncRHO{4}(1,:,:); | 
| 60 |  |  |  | 
| 61 |  |  | ferfile = strcat(pathname,sla,snapshot,sla,filH,'.',netcdf_domain,'.',ext); | 
| 62 |  |  | ncH     = netcdf(ferfile,'nowrite'); | 
| 63 |  |  | EKL     = ncH{4}(1,:,:); | 
| 64 |  |  |  | 
| 65 |  |  |  | 
| 66 |  |  |  | 
| 67 |  |  |  | 
| 68 |  |  | %%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 69 |  |  | % First term | 
| 70 |  |  | %%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 71 |  |  |  | 
| 72 |  |  | % Dim: | 
| 73 |  |  | if toshow, disp('dim'), end | 
| 74 |  |  | nx = length(STlon) ; | 
| 75 |  |  | ny = length(STlat) - 1 ; | 
| 76 |  |  | nz = length(STdpt); | 
| 77 |  |  |  | 
| 78 |  |  | % Pre-allocate: | 
| 79 |  |  | if toshow, disp('pre-allocate'), end | 
| 80 |  |  | dSIGMATHETAdy = zeros(nz,ny-1,nx).*NaN; | 
| 81 |  |  | dy       = zeros(1,ny).*NaN; | 
| 82 |  |  | STup      = zeros(nz,ny); | 
| 83 |  |  | STdw      = zeros(nz,ny); | 
| 84 |  |  |  | 
| 85 |  |  | % Meridional gradient of SIGMATHETA: | 
| 86 |  |  | if toshow, disp('grad'), end | 
| 87 |  |  | % Assuming the grid is regular, dy is independent of x: | 
| 88 |  |  | [dy b] = meshgrid( m_lldist([1 1]*STlon(1),STlat(1:ny+1) ), STdpt ) ; clear b | 
| 89 |  |  | for ix = 1 : nx | 
| 90 |  |  | if toshow, disp(strcat(num2str(ix),'/',num2str(nx))), end | 
| 91 |  |  | STup  = squeeze(ncST{4}(:,2:ny+1,ix)); | 
| 92 |  |  | STdw  = squeeze(ncST{4}(:,1:ny,ix)); | 
| 93 |  |  | dSTdy = ( STup - STdw ) ./ dy; | 
| 94 |  |  | % Change horizontal grid point definition to fit with SIGMATHETA: | 
| 95 |  |  | dSTdy = ( dSTdy(:,1:ny-1) + dSTdy(:,2:ny) )./2; | 
| 96 |  |  | dSIGMATHETAdy(:,:,ix) = dSTdy; | 
| 97 |  |  | end %for iy | 
| 98 |  |  |  | 
| 99 |  |  | % Make TAUx having same limits: | 
| 100 |  |  | TAUx = ncTx{4}(1,2:ny,:); | 
| 101 |  |  |  | 
| 102 |  |  | % Compute first term: TAUx * dSIGMATHETA/dy | 
| 103 |  |  | iz    = 1; | 
| 104 |  |  | JFz_a = TAUx .* squeeze(dSIGMATHETAdy(iz,:,:)) ; | 
| 105 |  |  |  | 
| 106 |  |  |  | 
| 107 |  |  | %%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 108 |  |  | % Second term | 
| 109 |  |  | %%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 110 |  |  |  | 
| 111 |  |  | % Dim: | 
| 112 |  |  | if toshow, disp('dim'), end | 
| 113 |  |  | nx = length(STlon) - 1; | 
| 114 |  |  | ny = length(STlat) ; | 
| 115 |  |  | nz = length(STdpt) ; | 
| 116 |  |  |  | 
| 117 |  |  | % Pre-allocate: | 
| 118 |  |  | if toshow, disp('pre-allocate'), end | 
| 119 |  |  | dSIGMATHETAdx = zeros(nz,ny,nx-1).*NaN; | 
| 120 |  |  | dx       = zeros(1,nx).*NaN; | 
| 121 |  |  | STup      = zeros(nz,nx); | 
| 122 |  |  | STdw      = zeros(nz,nx); | 
| 123 |  |  |  | 
| 124 |  |  | % Zonal gradient of SIGMATHETA | 
| 125 |  |  | if toshow, disp('grad'), end | 
| 126 |  |  | for iy = 1 : ny | 
| 127 |  |  | if toshow, disp(strcat(num2str(iy),'/',num2str(ny))), end | 
| 128 |  |  | [dx b] = meshgrid( m_lldist(STlon(1:nx+1),[1 1]*STlat(iy)), STdpt ) ; clear b | 
| 129 |  |  | STup    = squeeze(ncST{4}(:,iy,2:nx+1)); | 
| 130 |  |  | STdw    = squeeze(ncST{4}(:,iy,1:nx)); | 
| 131 |  |  | dSTdx   = ( STup - STdw ) ./ dx; | 
| 132 |  |  | % Change horizontal grid point definition to fit with SIGMATHETA: | 
| 133 |  |  | dSTdx   = ( dSTdx(:,1:nx-1) + dSTdx(:,2:nx) )./2; | 
| 134 |  |  | dSIGMATHETAdx(:,iy,:) = dSTdx; | 
| 135 |  |  | end %for iy | 
| 136 |  |  |  | 
| 137 |  |  | % Make TAUy having same limits: | 
| 138 |  |  | TAUy  = ncTy{4}(1,:,2:nx); | 
| 139 |  |  |  | 
| 140 |  |  | % Compute second term: TAUy * dSIGMATHETA/dx | 
| 141 |  |  | iz    = 1; | 
| 142 |  |  | JFz_b = TAUy .* squeeze(dSIGMATHETAdx(iz,:,:)) ; | 
| 143 |  |  |  | 
| 144 |  |  |  | 
| 145 |  |  |  | 
| 146 |  |  | %%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 147 |  |  | % Finish ... | 
| 148 |  |  | %%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 149 |  |  | % Then make all terms having same limits: | 
| 150 |  |  | nx = length(STlon) ; | 
| 151 |  |  | ny = length(STlat) ; | 
| 152 |  |  | nz = length(STdpt) ; | 
| 153 |  |  | JFz_a   = squeeze(JFz_a(:,2:nx-1)); | 
| 154 |  |  | JFz_b   = squeeze(JFz_b(2:ny-1,:)); | 
| 155 |  |  | delta_e = squeeze(EKL(2:ny-1,2:nx-1)); | 
| 156 |  |  | rho     = squeeze(RHO(2:ny-1,2:nx-1)); | 
| 157 |  |  |  | 
| 158 |  |  | % and finish: | 
| 159 |  |  | JFz = (JFz_a - JFz_b)./delta_e./rho; | 
| 160 |  |  |  | 
| 161 |  |  |  | 
| 162 |  |  | %%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 163 |  |  | % Record | 
| 164 |  |  | %%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 165 |  |  | if toshow, disp('record'), end | 
| 166 |  |  |  | 
| 167 |  |  | % General informations: | 
| 168 |  |  | netfil     = 'JFz'; | 
| 169 |  |  | units      = 'kg/m3/s2'; | 
| 170 |  |  | ncid       = 'JFz'; | 
| 171 |  |  | longname   = 'Vertical PV flux due to frictional forces'; | 
| 172 |  |  | uniquename = 'JFz'; | 
| 173 |  |  |  | 
| 174 |  |  | % Open output file: | 
| 175 |  |  | nc = netcdf(strcat(pathname,sla,snapshot,sla,netfil,'.',netcdf_domain,'.',ext),'clobber'); | 
| 176 |  |  |  | 
| 177 |  |  | % Define axis: | 
| 178 |  |  | nx = length(STlon) ; | 
| 179 |  |  | ny = length(STlat) ; | 
| 180 |  |  | nz = 1 ; | 
| 181 |  |  |  | 
| 182 |  |  | nc('X') = nx-2; | 
| 183 |  |  | nc('Y') = ny-2; | 
| 184 |  |  | nc('Z') = nz; | 
| 185 |  |  |  | 
| 186 |  |  | nc{'X'}            = ncfloat('X'); | 
| 187 |  |  | nc{'X'}.uniquename = ncchar('X'); | 
| 188 |  |  | nc{'X'}.long_name  = ncchar('longitude'); | 
| 189 |  |  | nc{'X'}.gridtype   = nclong(0); | 
| 190 |  |  | nc{'X'}.units      = ncchar('degrees_east'); | 
| 191 |  |  | nc{'X'}(:)         = STlon(2:nx-1); | 
| 192 |  |  |  | 
| 193 |  |  | nc{'Y'}            = ncfloat('Y'); | 
| 194 |  |  | nc{'Y'}.uniquename = ncchar('Y'); | 
| 195 |  |  | nc{'Y'}.long_name  = ncchar('latitude'); | 
| 196 |  |  | nc{'Y'}.gridtype   = nclong(0); | 
| 197 |  |  | nc{'Y'}.units      = ncchar('degrees_north'); | 
| 198 |  |  | nc{'Y'}(:)         = STlat(2:ny-1); | 
| 199 |  |  |  | 
| 200 |  |  | nc{'Z'}            = ncfloat('Z'); | 
| 201 |  |  | nc{'Z'}.uniquename = ncchar('Z'); | 
| 202 |  |  | nc{'Z'}.long_name  = ncchar('depth'); | 
| 203 |  |  | nc{'Z'}.gridtype   = nclong(0); | 
| 204 |  |  | nc{'Z'}.units      = ncchar('m'); | 
| 205 |  |  | nc{'Z'}(:)         = STdpt(1); | 
| 206 |  |  |  | 
| 207 |  |  | % And main field: | 
| 208 |  |  | nc{ncid}               = ncfloat('Z', 'Y', 'X'); | 
| 209 |  |  | nc{ncid}.units         = ncchar(units); | 
| 210 |  |  | nc{ncid}.missing_value = ncfloat(NaN); | 
| 211 |  |  | nc{ncid}.FillValue_    = ncfloat(NaN); | 
| 212 |  |  | nc{ncid}.longname      = ncchar(longname); | 
| 213 |  |  | nc{ncid}.uniquename    = ncchar(uniquename); | 
| 214 |  |  | nc{ncid}(:,:,:)        = JFz; | 
| 215 |  |  |  | 
| 216 |  |  | nc=close(nc); | 
| 217 |  |  |  | 
| 218 |  |  |  |