| 1 |
% |
| 2 |
% [JBz] = compute_JBz(SNAPSHOT) |
| 3 |
% |
| 4 |
% Here we compute the PV flux due to diabatic processes as |
| 5 |
% JFz = - alpha * f * Qnet / MLD / Cw |
| 6 |
% where: |
| 7 |
% alpha = 2.5*E-4 1/K is the thermal expansion coefficient |
| 8 |
% f = 2*OMEGA*sin(LAT) is the Coriolis parameter |
| 9 |
% Qnet is the net surface heat flux (W/m^2), positive downward |
| 10 |
% MLD is the mixed layer depth (m, positive) |
| 11 |
% Cw = 4187 J/kg/K is the specific heat of seawater |
| 12 |
% |
| 13 |
% Files names are: |
| 14 |
% INPUT: |
| 15 |
% ./netcdf-files/<SNAPSHOT>/<netcdf_Qnet>.<netcdf_domain>.<netcdf_suff> |
| 16 |
% ./netcdf-files/<SNAPSHOT>/<netcdf_MLD>.<netcdf_domain>.<netcdf_suff> |
| 17 |
% OUTPUT: |
| 18 |
% ./netcdf-files/<SNAPSHOT>/JBz.<netcdf_domain>.<netcdf_suff> |
| 19 |
% |
| 20 |
% with: netcdf_* as global variables |
| 21 |
% |
| 22 |
% 06/27/06 |
| 23 |
% gmaze@mit.edu |
| 24 |
|
| 25 |
function varargout = compute_JBz(snapshot) |
| 26 |
|
| 27 |
global sla toshow |
| 28 |
global netcdf_suff netcdf_domain |
| 29 |
global netcdf_Qnet netcdf_MLD |
| 30 |
pv_checkpath |
| 31 |
|
| 32 |
|
| 33 |
% Path and extension to find netcdf-files: |
| 34 |
pathname = strcat('netcdf-files',sla); |
| 35 |
ext = netcdf_suff; |
| 36 |
|
| 37 |
% Load files: |
| 38 |
ferfile = strcat(pathname,sla,snapshot,sla,netcdf_Qnet,'.',netcdf_domain,'.',ext); |
| 39 |
ncQ = netcdf(ferfile,'nowrite'); |
| 40 |
[Qlon Qlat Qdpt] = coordfromnc(ncQ); |
| 41 |
|
| 42 |
ferfile = strcat(pathname,sla,snapshot,sla,netcdf_MLD,'.',netcdf_domain,'.',ext); |
| 43 |
ncMLD = netcdf(ferfile,'nowrite'); |
| 44 |
[MLDlon MLDlat MLDdpt] = coordfromnc(ncMLD); |
| 45 |
|
| 46 |
|
| 47 |
|
| 48 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 49 |
% surface PV flux |
| 50 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 51 |
|
| 52 |
% Define axis: |
| 53 |
nx = length(Qlon) ; |
| 54 |
ny = length(Qlat) ; |
| 55 |
nz = length(Qdpt) ; |
| 56 |
|
| 57 |
|
| 58 |
% Planetary vorticity: |
| 59 |
f = 2*(2*pi/86400)*sin(Qlat*pi/180); |
| 60 |
[a f] = meshgrid(Qlon,f); clear a c |
| 61 |
|
| 62 |
|
| 63 |
% Net surface heat flux: |
| 64 |
Qnet = ncQ{4}(:,:,:); |
| 65 |
|
| 66 |
|
| 67 |
% Mixed layer Depth: |
| 68 |
MLD = ncMLD{4}(:,:,:); |
| 69 |
|
| 70 |
|
| 71 |
% Coefficient: |
| 72 |
alpha = 2.5*10^(-4); % Surface average value |
| 73 |
Cw = 4187; |
| 74 |
coef = - alpha / Cw; |
| 75 |
|
| 76 |
|
| 77 |
% JBz: |
| 78 |
JBz = zeros(nz,ny,nx).*NaN; |
| 79 |
JBz(1,:,:) = coef*f.*Qnet./MLD; |
| 80 |
|
| 81 |
|
| 82 |
|
| 83 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 84 |
% Record |
| 85 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 86 |
if toshow, disp('record'), end |
| 87 |
|
| 88 |
% General informations: |
| 89 |
netfil = 'JBz'; |
| 90 |
units = 'kg/m3/s2'; |
| 91 |
ncid = 'JBz'; |
| 92 |
longname = 'Vertical PV flux due to diabatic processes'; |
| 93 |
uniquename = 'JBz'; |
| 94 |
|
| 95 |
% Open output file: |
| 96 |
nc = netcdf(strcat(pathname,sla,snapshot,sla,netfil,'.',netcdf_domain,'.',ext),'clobber'); |
| 97 |
|
| 98 |
% Define axis: |
| 99 |
nx = length(Qlon) ; |
| 100 |
ny = length(Qlat) ; |
| 101 |
nz = 1 ; |
| 102 |
|
| 103 |
nc('X') = nx; |
| 104 |
nc('Y') = ny; |
| 105 |
nc('Z') = nz; |
| 106 |
|
| 107 |
nc{'X'} = ncfloat('X'); |
| 108 |
nc{'X'}.uniquename = ncchar('X'); |
| 109 |
nc{'X'}.long_name = ncchar('longitude'); |
| 110 |
nc{'X'}.gridtype = nclong(0); |
| 111 |
nc{'X'}.units = ncchar('degrees_east'); |
| 112 |
nc{'X'}(:) = Qlon; |
| 113 |
|
| 114 |
nc{'Y'} = ncfloat('Y'); |
| 115 |
nc{'Y'}.uniquename = ncchar('Y'); |
| 116 |
nc{'Y'}.long_name = ncchar('latitude'); |
| 117 |
nc{'Y'}.gridtype = nclong(0); |
| 118 |
nc{'Y'}.units = ncchar('degrees_north'); |
| 119 |
nc{'Y'}(:) = Qlat; |
| 120 |
|
| 121 |
nc{'Z'} = ncfloat('Z'); |
| 122 |
nc{'Z'}.uniquename = ncchar('Z'); |
| 123 |
nc{'Z'}.long_name = ncchar('depth'); |
| 124 |
nc{'Z'}.gridtype = nclong(0); |
| 125 |
nc{'Z'}.units = ncchar('m'); |
| 126 |
nc{'Z'}(:) = Qdpt(1); |
| 127 |
|
| 128 |
% And main field: |
| 129 |
nc{ncid} = ncfloat('Z', 'Y', 'X'); |
| 130 |
nc{ncid}.units = ncchar(units); |
| 131 |
nc{ncid}.missing_value = ncfloat(NaN); |
| 132 |
nc{ncid}.FillValue_ = ncfloat(NaN); |
| 133 |
nc{ncid}.longname = ncchar(longname); |
| 134 |
nc{ncid}.uniquename = ncchar(uniquename); |
| 135 |
nc{ncid}(:,:,:) = JBz; |
| 136 |
|
| 137 |
nc=close(nc); |
| 138 |
close(ncQ); |
| 139 |
close(ncMLD); |
| 140 |
|
| 141 |
|
| 142 |
|
| 143 |
% Output: |
| 144 |
output = struct('JBz',JBz,'lat',Qlat,'lon',Qlon); |
| 145 |
switch nargout |
| 146 |
case 1 |
| 147 |
varargout(1) = {output}; |
| 148 |
end |