| 1 | 
% | 
| 2 | 
% [JBz] = compute_JBz(SNAPSHOT) | 
| 3 | 
% | 
| 4 | 
% Here we compute the PV flux due to diabatic processes as | 
| 5 | 
% JFz = - alpha * f * Qnet / MLD / Cw | 
| 6 | 
% where: | 
| 7 | 
%  alpha = 2.5*E-4 1/K is the thermal expansion coefficient | 
| 8 | 
%  f = 2*OMEGA*sin(LAT) is the Coriolis parameter | 
| 9 | 
%  Qnet is the net surface heat flux (W/m^2), positive downward | 
| 10 | 
%  MLD is the mixed layer depth (m, positive) | 
| 11 | 
%  Cw = 4187 J/kg/K is the specific heat of seawater | 
| 12 | 
% | 
| 13 | 
% Files names are: | 
| 14 | 
% INPUT: | 
| 15 | 
% ./netcdf-files/<SNAPSHOT>/<netcdf_Qnet>.<netcdf_domain>.<netcdf_suff> | 
| 16 | 
% ./netcdf-files/<SNAPSHOT>/<netcdf_MLD>.<netcdf_domain>.<netcdf_suff> | 
| 17 | 
% OUTPUT: | 
| 18 | 
% ./netcdf-files/<SNAPSHOT>/JBz.<netcdf_domain>.<netcdf_suff> | 
| 19 | 
%  | 
| 20 | 
% with: netcdf_* as global variables | 
| 21 | 
% | 
| 22 | 
% 06/27/06 | 
| 23 | 
% gmaze@mit.edu | 
| 24 | 
 | 
| 25 | 
function varargout = compute_JBz(snapshot) | 
| 26 | 
 | 
| 27 | 
global sla toshow | 
| 28 | 
global netcdf_suff netcdf_domain | 
| 29 | 
global netcdf_Qnet netcdf_MLD | 
| 30 | 
pv_checkpath | 
| 31 | 
 | 
| 32 | 
 | 
| 33 | 
% Path and extension to find netcdf-files: | 
| 34 | 
pathname = strcat('netcdf-files',sla); | 
| 35 | 
ext = netcdf_suff; | 
| 36 | 
 | 
| 37 | 
% Load files: | 
| 38 | 
ferfile = strcat(pathname,sla,snapshot,sla,netcdf_Qnet,'.',netcdf_domain,'.',ext); | 
| 39 | 
ncQ     = netcdf(ferfile,'nowrite'); | 
| 40 | 
[Qlon Qlat Qdpt] = coordfromnc(ncQ); | 
| 41 | 
 | 
| 42 | 
ferfile = strcat(pathname,sla,snapshot,sla,netcdf_MLD,'.',netcdf_domain,'.',ext); | 
| 43 | 
ncMLD   = netcdf(ferfile,'nowrite'); | 
| 44 | 
[MLDlon MLDlat MLDdpt] = coordfromnc(ncMLD); | 
| 45 | 
 | 
| 46 | 
 | 
| 47 | 
 | 
| 48 | 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 49 | 
% surface PV flux | 
| 50 | 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 51 | 
 | 
| 52 | 
% Define axis: | 
| 53 | 
nx = length(Qlon) ; | 
| 54 | 
ny = length(Qlat) ; | 
| 55 | 
nz = length(Qdpt) ; | 
| 56 | 
 | 
| 57 | 
 | 
| 58 | 
% Planetary vorticity: | 
| 59 | 
f     = 2*(2*pi/86400)*sin(Qlat*pi/180); | 
| 60 | 
[a f] = meshgrid(Qlon,f); clear a c | 
| 61 | 
 | 
| 62 | 
 | 
| 63 | 
% Net surface heat flux: | 
| 64 | 
Qnet = ncQ{4}(:,:,:); | 
| 65 | 
 | 
| 66 | 
 | 
| 67 | 
% Mixed layer Depth: | 
| 68 | 
MLD = ncMLD{4}(:,:,:); | 
| 69 | 
 | 
| 70 | 
 | 
| 71 | 
% Coefficient: | 
| 72 | 
alpha = 2.5*10^(-4); % Surface average value | 
| 73 | 
Cw    = 4187;              | 
| 74 | 
coef  = - alpha / Cw; | 
| 75 | 
 | 
| 76 | 
 | 
| 77 | 
% JBz: | 
| 78 | 
JBz = zeros(nz,ny,nx).*NaN; | 
| 79 | 
JBz(1,:,:) = coef*f.*Qnet./MLD; | 
| 80 | 
 | 
| 81 | 
 | 
| 82 | 
 | 
| 83 | 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 84 | 
% Record | 
| 85 | 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 86 | 
if toshow, disp('record'), end | 
| 87 | 
 | 
| 88 | 
% General informations:  | 
| 89 | 
netfil     = 'JBz'; | 
| 90 | 
units      = 'kg/m3/s2'; | 
| 91 | 
ncid       = 'JBz'; | 
| 92 | 
longname   = 'Vertical PV flux due to diabatic processes'; | 
| 93 | 
uniquename = 'JBz'; | 
| 94 | 
 | 
| 95 | 
% Open output file: | 
| 96 | 
nc = netcdf(strcat(pathname,sla,snapshot,sla,netfil,'.',netcdf_domain,'.',ext),'clobber'); | 
| 97 | 
 | 
| 98 | 
% Define axis: | 
| 99 | 
nx = length(Qlon) ; | 
| 100 | 
ny = length(Qlat) ; | 
| 101 | 
nz = 1 ; | 
| 102 | 
 | 
| 103 | 
nc('X') = nx; | 
| 104 | 
nc('Y') = ny; | 
| 105 | 
nc('Z') = nz; | 
| 106 | 
  | 
| 107 | 
nc{'X'}            = ncfloat('X'); | 
| 108 | 
nc{'X'}.uniquename = ncchar('X'); | 
| 109 | 
nc{'X'}.long_name  = ncchar('longitude'); | 
| 110 | 
nc{'X'}.gridtype   = nclong(0); | 
| 111 | 
nc{'X'}.units      = ncchar('degrees_east'); | 
| 112 | 
nc{'X'}(:)         = Qlon; | 
| 113 | 
  | 
| 114 | 
nc{'Y'}            = ncfloat('Y');  | 
| 115 | 
nc{'Y'}.uniquename = ncchar('Y'); | 
| 116 | 
nc{'Y'}.long_name  = ncchar('latitude'); | 
| 117 | 
nc{'Y'}.gridtype   = nclong(0); | 
| 118 | 
nc{'Y'}.units      = ncchar('degrees_north'); | 
| 119 | 
nc{'Y'}(:)         = Qlat; | 
| 120 | 
  | 
| 121 | 
nc{'Z'}            = ncfloat('Z'); | 
| 122 | 
nc{'Z'}.uniquename = ncchar('Z'); | 
| 123 | 
nc{'Z'}.long_name  = ncchar('depth'); | 
| 124 | 
nc{'Z'}.gridtype   = nclong(0); | 
| 125 | 
nc{'Z'}.units      = ncchar('m'); | 
| 126 | 
nc{'Z'}(:)         = Qdpt(1); | 
| 127 | 
  | 
| 128 | 
% And main field: | 
| 129 | 
nc{ncid}               = ncfloat('Z', 'Y', 'X');  | 
| 130 | 
nc{ncid}.units         = ncchar(units); | 
| 131 | 
nc{ncid}.missing_value = ncfloat(NaN); | 
| 132 | 
nc{ncid}.FillValue_    = ncfloat(NaN); | 
| 133 | 
nc{ncid}.longname      = ncchar(longname); | 
| 134 | 
nc{ncid}.uniquename    = ncchar(uniquename); | 
| 135 | 
nc{ncid}(:,:,:)        = JBz; | 
| 136 | 
 | 
| 137 | 
nc=close(nc); | 
| 138 | 
close(ncQ); | 
| 139 | 
close(ncMLD); | 
| 140 | 
 | 
| 141 | 
 | 
| 142 | 
 | 
| 143 | 
% Output: | 
| 144 | 
output = struct('JBz',JBz,'lat',Qlat,'lon',Qlon); | 
| 145 | 
switch nargout | 
| 146 | 
 case 1 | 
| 147 | 
  varargout(1) = {output}; | 
| 148 | 
end |