1 |
gmaze |
1.1 |
% |
2 |
gmaze |
1.2 |
% [EKL] = compute_EKLx(SNAPSHOT) |
3 |
gmaze |
1.1 |
% |
4 |
|
|
% Here we compute the Ekman Layer Depth as: |
5 |
|
|
% EKL = 0.7 sqrt( TAUx/RHO )/f |
6 |
|
|
% |
7 |
|
|
% where: |
8 |
|
|
% TAUx is the amplitude of the zonal surface wind-stress (N/m2) |
9 |
|
|
% RHO is the density of seawater (kg/m3) |
10 |
|
|
% f is the Coriolis parameter (kg/m3) |
11 |
|
|
% EKL is the Ekman layer depth (m) |
12 |
|
|
% |
13 |
|
|
% Files names are: |
14 |
|
|
% INPUT: |
15 |
|
|
% ./netcdf-files/<SNAPSHOT>/<netcdf_RHO>.<netcdf_domain>.<netcdf_suff> |
16 |
|
|
% ./netcdf-files/<SNAPSHOT>/<netcdf_TAUX>.<netcdf_domain>.<netcdf_suff> |
17 |
|
|
% OUTPUT |
18 |
|
|
% ./netcdf-files/<SNAPSHOT>/<netcdf_EKLx>.<netcdf_domain>.<netcdf_suff> |
19 |
|
|
% |
20 |
|
|
% with netcdf_* as global variables |
21 |
|
|
% netcdf_EKLx = 'EKLx' by default |
22 |
|
|
% |
23 |
|
|
% 12/04/06 |
24 |
|
|
% gmaze@mit.edu |
25 |
|
|
|
26 |
gmaze |
1.2 |
function varargout = compute_EKLx(snapshot) |
27 |
gmaze |
1.1 |
|
28 |
|
|
global sla toshow |
29 |
|
|
global netcdf_suff netcdf_domain |
30 |
|
|
global netcdf_TAUX netcdf_RHO netcdf_EKLx |
31 |
|
|
pv_checkpath |
32 |
|
|
global EKL Tx Ty TAU RHO f |
33 |
|
|
|
34 |
|
|
|
35 |
|
|
% NETCDF file name: |
36 |
|
|
filTx = netcdf_TAUX; |
37 |
|
|
filRHO = netcdf_RHO; |
38 |
|
|
|
39 |
|
|
% Path and extension to find them: |
40 |
|
|
pathname = strcat('netcdf-files',sla); |
41 |
|
|
ext = netcdf_suff; |
42 |
|
|
|
43 |
|
|
% Load files: |
44 |
|
|
ferfile = strcat(pathname,sla,snapshot,sla,filTx,'.',netcdf_domain,'.',ext); |
45 |
|
|
ncTx = netcdf(ferfile,'nowrite'); |
46 |
|
|
Tx = ncTx{4}(1,:,:); |
47 |
|
|
|
48 |
|
|
ferfile = strcat(pathname,sla,snapshot,sla,filRHO,'.',netcdf_domain,'.',ext); |
49 |
|
|
ncRHO = netcdf(ferfile,'nowrite'); |
50 |
|
|
RHO = ncRHO{4}(1,:,:); |
51 |
|
|
[RHOlon RHOlat RHOdpt] = coordfromnc(ncRHO); |
52 |
|
|
|
53 |
|
|
|
54 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
55 |
|
|
% Get EKL |
56 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
57 |
|
|
|
58 |
|
|
% Dim: |
59 |
|
|
if toshow, disp('dim'), end |
60 |
|
|
nx = length(RHOlon); |
61 |
|
|
ny = length(RHOlat); |
62 |
|
|
ynz = length(RHOdpt); |
63 |
|
|
|
64 |
|
|
% Pre-allocate: |
65 |
|
|
if toshow, disp('pre-allocate'), end |
66 |
|
|
EKL = zeros(ny,nx); |
67 |
|
|
|
68 |
|
|
% Planetary vorticity: |
69 |
|
|
f = 2*(2*pi/86400)*sin(RHOlat*pi/180); |
70 |
|
|
[a f c]=meshgrid(RHOlon,f,RHOdpt); clear a c |
71 |
|
|
f = permute(f,[3 1 2]); |
72 |
|
|
f = squeeze(f(1,:,:)); |
73 |
|
|
|
74 |
|
|
% Windstress amplitude: |
75 |
|
|
TAU = sqrt( Tx.^2 ); |
76 |
|
|
|
77 |
|
|
% Ekman Layer Depth: |
78 |
|
|
EKL = 0.7* sqrt(TAU ./ RHO) ./f; |
79 |
|
|
%EKL = 1.7975 * sqrt( TAU ./ RHO ./ f ); |
80 |
|
|
|
81 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
82 |
|
|
% Record |
83 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
84 |
|
|
if toshow, disp('record'), end |
85 |
|
|
|
86 |
|
|
% General informations: |
87 |
|
|
if ~isempty('netcdf_EKLx') |
88 |
|
|
netfil = netcdf_EKLx; |
89 |
|
|
else |
90 |
|
|
netfil = 'EKLx'; |
91 |
|
|
end |
92 |
|
|
units = 'm'; |
93 |
|
|
ncid = 'EKLx'; |
94 |
|
|
longname = 'Ekman Layer Depth from TAUx'; |
95 |
|
|
uniquename = 'EKLx'; |
96 |
|
|
|
97 |
|
|
% Open output file: |
98 |
|
|
nc = netcdf(strcat(pathname,sla,snapshot,sla,netfil,'.',netcdf_domain,'.',ext),'clobber'); |
99 |
|
|
|
100 |
|
|
% Define axis: |
101 |
|
|
nx = length(RHOlon) ; |
102 |
|
|
ny = length(RHOlat) ; |
103 |
|
|
nz = 1 ; |
104 |
|
|
|
105 |
|
|
nc('X') = nx; |
106 |
|
|
nc('Y') = ny; |
107 |
|
|
nc('Z') = nz; |
108 |
|
|
|
109 |
|
|
nc{'X'} = ncfloat('X'); |
110 |
|
|
nc{'X'}.uniquename = ncchar('X'); |
111 |
|
|
nc{'X'}.long_name = ncchar('longitude'); |
112 |
|
|
nc{'X'}.gridtype = nclong(0); |
113 |
|
|
nc{'X'}.units = ncchar('degrees_east'); |
114 |
|
|
nc{'X'}(:) = RHOlon; |
115 |
|
|
|
116 |
|
|
nc{'Y'} = ncfloat('Y'); |
117 |
|
|
nc{'Y'}.uniquename = ncchar('Y'); |
118 |
|
|
nc{'Y'}.long_name = ncchar('latitude'); |
119 |
|
|
nc{'Y'}.gridtype = nclong(0); |
120 |
|
|
nc{'Y'}.units = ncchar('degrees_north'); |
121 |
|
|
nc{'Y'}(:) = RHOlat; |
122 |
|
|
|
123 |
|
|
nc{'Z'} = ncfloat('Z'); |
124 |
|
|
nc{'Z'}.uniquename = ncchar('Z'); |
125 |
|
|
nc{'Z'}.long_name = ncchar('depth'); |
126 |
|
|
nc{'Z'}.gridtype = nclong(0); |
127 |
|
|
nc{'Z'}.units = ncchar('m'); |
128 |
|
|
nc{'Z'}(:) = RHOdpt(1); |
129 |
|
|
|
130 |
|
|
% And main field: |
131 |
|
|
nc{ncid} = ncfloat('Z', 'Y', 'X'); |
132 |
|
|
nc{ncid}.units = ncchar(units); |
133 |
|
|
nc{ncid}.missing_value = ncfloat(NaN); |
134 |
|
|
nc{ncid}.FillValue_ = ncfloat(NaN); |
135 |
|
|
nc{ncid}.longname = ncchar(longname); |
136 |
|
|
nc{ncid}.uniquename = ncchar(uniquename); |
137 |
|
|
nc{ncid}(:,:,:) = EKL; |
138 |
|
|
|
139 |
|
|
|
140 |
|
|
|
141 |
|
|
% Close files: |
142 |
|
|
close(ncTx); |
143 |
|
|
close(ncRHO); |
144 |
|
|
close(nc); |
145 |
|
|
|
146 |
|
|
|
147 |
gmaze |
1.2 |
|
148 |
|
|
% Output: |
149 |
|
|
output = struct('EKL',EKL,'lat',RHOlat,'lon',RHOlon); |
150 |
|
|
switch nargout |
151 |
|
|
case 1 |
152 |
|
|
varargout(1) = {output}; |
153 |
|
|
end |