| 1 |
gmaze |
1.1 |
% |
| 2 |
gmaze |
1.4 |
% [Q] = C_compute_potential_vorticity(SNAPSHOT,[WANTSPLPV]) |
| 3 |
gmaze |
1.6 |
% [Q1,Q2,Q3] = C_compute_potential_vorticity(SNAPSHOT,[WANTSPLPV]) |
| 4 |
gmaze |
1.1 |
% |
| 5 |
|
|
% This file computes the potential vorticity Q from |
| 6 |
|
|
% netcdf files of relative vorticity (OMEGAX, OMEGAY, ZETA) |
| 7 |
|
|
% and potential density (SIGMATHETA) as |
| 8 |
|
|
% Q = OMEGAX . dSIGMATHETA/dx + OMEGAY . dSIGMATHETA/dy + (f+ZETA).dSIGMATHETA/dz |
| 9 |
|
|
% |
| 10 |
|
|
% The optional flag WANTSPLPV is set to 0 by defaut. If turn to 1, |
| 11 |
|
|
% then the program computes the simple PV defined by: |
| 12 |
|
|
% splQ = f.dSIGMATHETA/dz |
| 13 |
|
|
% |
| 14 |
|
|
% Note that none of the fields are defined on the same grid points. |
| 15 |
|
|
% So, I decided to compute Q on the same grid as SIGMATHETA, ie. the |
| 16 |
|
|
% center of the c-grid. |
| 17 |
|
|
% |
| 18 |
gmaze |
1.3 |
% Files names are: |
| 19 |
|
|
% INPUT: |
| 20 |
|
|
% ./netcdf-files/<SNAPSHOT>/OMEGAX.<netcdf_domain>.<netcdf_suff> |
| 21 |
|
|
% ./netcdf-files/<SNAPSHOT>/OMEGAY.<netcdf_domain>.<netcdf_suff> |
| 22 |
|
|
% ./netcdf-files/<SNAPSHOT>/ZETA.<netcdf_domain>.<netcdf_suff> |
| 23 |
|
|
% ./netcdf-files/<SNAPSHOT>/SIGMATHETA.<netcdf_domain>.<netcdf_suff> |
| 24 |
|
|
% OUPUT: |
| 25 |
|
|
% ./netcdf-files/<SNAPSHOT>/PV.<netcdf_domain>.<netcdf_suff> |
| 26 |
|
|
% or |
| 27 |
|
|
% ./netcdf-files/<SNAPSHOT>/splPV.<netcdf_domain>.<netcdf_suff> |
| 28 |
|
|
% |
| 29 |
gmaze |
1.1 |
% 06/07/2006 |
| 30 |
|
|
% gmaze@mit.edu |
| 31 |
|
|
% |
| 32 |
|
|
|
| 33 |
gmaze |
1.5 |
function varargout = C_compute_potential_vorticity(snapshot,varargin) |
| 34 |
gmaze |
1.1 |
|
| 35 |
gmaze |
1.2 |
|
| 36 |
gmaze |
1.1 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 37 |
|
|
%% Setup |
| 38 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 39 |
|
|
global sla netcdf_domain netcdf_suff |
| 40 |
|
|
pv_checkpath |
| 41 |
|
|
|
| 42 |
|
|
%% Flags to choose which term to compute (by default, all): |
| 43 |
|
|
FLpv1 = 1; |
| 44 |
|
|
FLpv2 = 1; |
| 45 |
|
|
FLpv3 = 1; |
| 46 |
|
|
if nargin==2 % case of optional flag presents: |
| 47 |
|
|
if varargin{1}(1) == 1 % Case of the simple PV: |
| 48 |
|
|
FLpv1 = 0; |
| 49 |
|
|
FLpv2 = 0; |
| 50 |
|
|
FLpv3 = 2; |
| 51 |
|
|
end |
| 52 |
|
|
end %if |
| 53 |
gmaze |
1.6 |
%[FLpv1 FLpv2 FLpv3] |
| 54 |
|
|
|
| 55 |
gmaze |
1.1 |
|
| 56 |
|
|
%% Optionnal flags: |
| 57 |
|
|
global toshow % Turn to 1 to follow the computing process |
| 58 |
|
|
|
| 59 |
|
|
|
| 60 |
|
|
%% NETCDF files: |
| 61 |
|
|
|
| 62 |
|
|
% Path and extension to find them: |
| 63 |
|
|
pathname = strcat('netcdf-files',sla,snapshot,sla); |
| 64 |
gmaze |
1.6 |
%pathname = '.'; |
| 65 |
gmaze |
1.1 |
ext = strcat('.',netcdf_suff); |
| 66 |
|
|
|
| 67 |
|
|
% Names: |
| 68 |
|
|
if FLpv3 ~= 2 % We don't need them for splPV |
| 69 |
|
|
filOx = strcat('OMEGAX' ,'.',netcdf_domain); |
| 70 |
|
|
filOy = strcat('OMEGAY' ,'.',netcdf_domain); |
| 71 |
|
|
filOz = strcat('ZETA' ,'.',netcdf_domain); |
| 72 |
|
|
end %if |
| 73 |
|
|
filST = strcat('SIGMATHETA','.',netcdf_domain); |
| 74 |
|
|
|
| 75 |
|
|
% Load files and coordinates: |
| 76 |
|
|
if FLpv3 ~= 2 % We don't need them for splPV |
| 77 |
|
|
ferfile = strcat(pathname,sla,filOx,ext); |
| 78 |
|
|
ncOx = netcdf(ferfile,'nowrite'); |
| 79 |
|
|
[Oxlon Oxlat Oxdpt] = coordfromnc(ncOx); |
| 80 |
|
|
ferfile = strcat(pathname,sla,filOy,ext); |
| 81 |
|
|
ncOy = netcdf(ferfile,'nowrite'); |
| 82 |
|
|
[Oylon Oylat Oydpt] = coordfromnc(ncOy); |
| 83 |
|
|
ferfile = strcat(pathname,sla,filOz,ext); |
| 84 |
|
|
ncOz = netcdf(ferfile,'nowrite'); |
| 85 |
|
|
[Ozlon Ozlat Ozdpt] = coordfromnc(ncOz); |
| 86 |
|
|
end %if |
| 87 |
|
|
ferfile = strcat(pathname,sla,filST,ext); |
| 88 |
|
|
ncST = netcdf(ferfile,'nowrite'); |
| 89 |
|
|
[STlon STlat STdpt] = coordfromnc(ncST); |
| 90 |
|
|
|
| 91 |
|
|
|
| 92 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 93 |
|
|
% Then, compute the first term: OMEGAX . dSIGMATHETA/dx % |
| 94 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 95 |
|
|
if FLpv1 |
| 96 |
|
|
|
| 97 |
|
|
%%%%% |
| 98 |
|
|
%% 1: Compute zonal gradient of SIGMATHETA: |
| 99 |
|
|
|
| 100 |
|
|
% Dim: |
| 101 |
|
|
if toshow,disp('dim'),end |
| 102 |
|
|
nx = length(STlon) - 1; |
| 103 |
|
|
ny = length(STlat); |
| 104 |
|
|
nz = length(STdpt); |
| 105 |
|
|
|
| 106 |
|
|
% Pre-allocate: |
| 107 |
|
|
if toshow,disp('pre-allocate'),end |
| 108 |
|
|
dSIGMATHETAdx = zeros(nz,ny,nx-1)*NaN; |
| 109 |
|
|
dx = zeros(1,nx).*NaN; |
| 110 |
|
|
STup = zeros(nz,nx); |
| 111 |
|
|
STdw = zeros(nz,nx); |
| 112 |
|
|
|
| 113 |
|
|
% Zonal gradient of SIGMATHETA: |
| 114 |
|
|
if toshow,disp('grad'), end |
| 115 |
|
|
for iy = 1 : ny |
| 116 |
|
|
if toshow |
| 117 |
|
|
disp(strcat('Computing dSIGMATHETA/dx at latitude : ',num2str(STlat(iy)),... |
| 118 |
|
|
'^o (',num2str(iy),'/',num2str(ny),')' )); |
| 119 |
|
|
end |
| 120 |
|
|
[dx b] = meshgrid( m_lldist(STlon(1:nx+1),[1 1]*STlat(iy)), STdpt ) ; clear b |
| 121 |
|
|
STup = squeeze(ncST{4}(:,iy,2:nx+1)); |
| 122 |
|
|
STdw = squeeze(ncST{4}(:,iy,1:nx)); |
| 123 |
|
|
dSTdx = ( STup - STdw ) ./ dx; |
| 124 |
|
|
% Change horizontal grid point definition to fit with SIGMATHETA: |
| 125 |
|
|
dSTdx = ( dSTdx(:,1:nx-1) + dSTdx(:,2:nx) )./2; |
| 126 |
|
|
dSIGMATHETAdx(:,iy,:) = dSTdx; |
| 127 |
|
|
end %for iy |
| 128 |
|
|
|
| 129 |
|
|
|
| 130 |
|
|
%%%%% |
| 131 |
|
|
%% 2: Move OMEGAX on the same grid: |
| 132 |
|
|
if toshow,disp('Move OMEGAX on the same grid as dSIGMATHETA/dx'), end |
| 133 |
|
|
|
| 134 |
|
|
% Change vertical gridding of OMEGAX: |
| 135 |
|
|
Ox = ncOx{4}(:,:,:); |
| 136 |
|
|
Ox = ( Ox(2:nz-1,:,:) + Ox(1:nz-2,:,:) )./2; |
| 137 |
|
|
% And horizontal gridding: |
| 138 |
|
|
Ox = ( Ox(:,2:ny-1,:) + Ox(:,1:ny-2,:) )./2; |
| 139 |
|
|
|
| 140 |
|
|
%%%%% |
| 141 |
|
|
%% 3: Make both fields having same limits: |
| 142 |
|
|
%% (Keep points where both fields are defined) |
| 143 |
|
|
Ox = squeeze(Ox(:,:,2:nx)); |
| 144 |
|
|
dSIGMATHETAdx = squeeze( dSIGMATHETAdx (2:nz-1,2:ny-1,:) ); |
| 145 |
|
|
|
| 146 |
|
|
%%%%% |
| 147 |
|
|
%% 4: Last, compute first term of PV: |
| 148 |
|
|
PV1 = Ox.*dSIGMATHETAdx ; |
| 149 |
|
|
|
| 150 |
|
|
% and define axis fron the ST grid: |
| 151 |
|
|
PV1_lon = STlon(2:length(STlon)-1); |
| 152 |
|
|
PV1_lat = STlat(2:length(STlat)-1); |
| 153 |
|
|
PV1_dpt = STdpt(2:length(STdpt)-1); |
| 154 |
|
|
|
| 155 |
|
|
clear nx ny nz dx STup STdw iy dSTdx Ox dSIGMATHETAdx |
| 156 |
|
|
end %if FLpv1 |
| 157 |
|
|
|
| 158 |
|
|
|
| 159 |
|
|
|
| 160 |
|
|
|
| 161 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 162 |
|
|
% Compute the second term: OMEGAY . dSIGMATHETA/dy % |
| 163 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 164 |
|
|
if FLpv2 |
| 165 |
|
|
|
| 166 |
|
|
%%%%% |
| 167 |
|
|
%% 1: Compute meridional gradient of SIGMATHETA: |
| 168 |
|
|
|
| 169 |
|
|
% Dim: |
| 170 |
|
|
if toshow,disp('dim'), end |
| 171 |
|
|
nx = length(STlon) ; |
| 172 |
|
|
ny = length(STlat) - 1 ; |
| 173 |
|
|
nz = length(STdpt) ; |
| 174 |
|
|
|
| 175 |
|
|
% Pre-allocate: |
| 176 |
|
|
if toshow,disp('pre-allocate'), end |
| 177 |
|
|
dSIGMATHETAdy = zeros(nz,ny-1,nx).*NaN; |
| 178 |
|
|
dy = zeros(1,ny).*NaN; |
| 179 |
|
|
STup = zeros(nz,ny); |
| 180 |
|
|
STdw = zeros(nz,ny); |
| 181 |
|
|
|
| 182 |
|
|
% Meridional gradient of SIGMATHETA: |
| 183 |
|
|
% (Assuming the grid is regular, dy is independent of x) |
| 184 |
|
|
[dy b] = meshgrid( m_lldist([1 1]*STlon(1),STlat(1:ny+1) ), STdpt ) ; clear b |
| 185 |
|
|
for ix = 1 : nx |
| 186 |
|
|
if toshow |
| 187 |
|
|
disp(strcat('Computing dSIGMATHETA/dy at longitude : ',num2str(STlon(ix)),... |
| 188 |
|
|
'^o (',num2str(ix),'/',num2str(nx),')' )); |
| 189 |
|
|
end |
| 190 |
|
|
STup = squeeze(ncST{4}(:,2:ny+1,ix)); |
| 191 |
|
|
STdw = squeeze(ncST{4}(:,1:ny,ix)); |
| 192 |
|
|
dSTdy = ( STup - STdw ) ./ dy; |
| 193 |
|
|
% Change horizontal grid point definition to fit with SIGMATHETA: |
| 194 |
|
|
dSTdy = ( dSTdy(:,1:ny-1) + dSTdy(:,2:ny) )./2; |
| 195 |
|
|
dSIGMATHETAdy(:,:,ix) = dSTdy; |
| 196 |
|
|
end %for iy |
| 197 |
|
|
|
| 198 |
|
|
%%%%% |
| 199 |
|
|
%% 2: Move OMEGAY on the same grid: |
| 200 |
|
|
if toshow,disp('Move OMEGAY on the same grid as dSIGMATHETA/dy'), end |
| 201 |
|
|
|
| 202 |
|
|
% Change vertical gridding of OMEGAY: |
| 203 |
|
|
Oy = ncOy{4}(:,:,:); |
| 204 |
|
|
Oy = ( Oy(2:nz-1,:,:) + Oy(1:nz-2,:,:) )./2; |
| 205 |
|
|
% And horizontal gridding: |
| 206 |
|
|
Oy = ( Oy(:,:,2:nx-1) + Oy(:,:,1:nx-2) )./2; |
| 207 |
|
|
|
| 208 |
|
|
%%%%% |
| 209 |
|
|
%% 3: Make them having same limits: |
| 210 |
|
|
%% (Keep points where both fields are defined) |
| 211 |
|
|
Oy = squeeze(Oy(:,2:ny,:)); |
| 212 |
|
|
dSIGMATHETAdy = squeeze( dSIGMATHETAdy (2:nz-1,:,2:nx-1) ); |
| 213 |
|
|
|
| 214 |
|
|
%%%%% |
| 215 |
|
|
%% 4: Last, compute second term of PV: |
| 216 |
|
|
PV2 = Oy.*dSIGMATHETAdy ; |
| 217 |
|
|
|
| 218 |
|
|
% and defined axis fron the ST grid: |
| 219 |
|
|
PV2_lon = STlon(2:length(STlon)-1); |
| 220 |
|
|
PV2_lat = STlat(2:length(STlat)-1); |
| 221 |
|
|
PV2_dpt = STdpt(2:length(STdpt)-1); |
| 222 |
|
|
|
| 223 |
|
|
|
| 224 |
|
|
clear nx ny nz dy STup STdw dy dSTdy Oy dSIGMATHETAdy |
| 225 |
|
|
end %if FLpv2 |
| 226 |
|
|
|
| 227 |
|
|
|
| 228 |
|
|
|
| 229 |
|
|
|
| 230 |
|
|
|
| 231 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 232 |
|
|
% Compute the third term: ( f + ZETA ) . dSIGMATHETA/dz % |
| 233 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 234 |
|
|
if FLpv3 |
| 235 |
|
|
|
| 236 |
|
|
%%%%% |
| 237 |
|
|
%% 1: Compute vertical gradient of SIGMATHETA: |
| 238 |
|
|
|
| 239 |
|
|
% Dim: |
| 240 |
|
|
if toshow,disp('dim'), end |
| 241 |
|
|
nx = length(STlon) ; |
| 242 |
|
|
ny = length(STlat) ; |
| 243 |
|
|
nz = length(STdpt) - 1 ; |
| 244 |
|
|
|
| 245 |
|
|
% Pre-allocate: |
| 246 |
|
|
if toshow,disp('pre-allocate'), end |
| 247 |
|
|
dSIGMATHETAdz = zeros(nz-1,ny,nx).*NaN; |
| 248 |
|
|
ST = zeros(nz+1,ny,nx); |
| 249 |
|
|
dz = zeros(1,nz).*NaN; |
| 250 |
|
|
|
| 251 |
|
|
% Vertical grid differences: |
| 252 |
gmaze |
1.6 |
% STdpt contains negative values with STdpt(1) at the surface |
| 253 |
|
|
% and STdpt(end) at the bottom of the ocean. |
| 254 |
|
|
% So dz is positive with respect to z axis upward: |
| 255 |
|
|
dz = -diff(STdpt); |
| 256 |
gmaze |
1.1 |
[a dz_3D c] = meshgrid(STlat,dz,STlon); clear a c |
| 257 |
|
|
|
| 258 |
|
|
% Vertical gradient: |
| 259 |
|
|
if toshow,disp('Vertical gradient of SIGMATHETA'), end |
| 260 |
|
|
ST = ncST{4}(:,:,:); |
| 261 |
gmaze |
1.6 |
% Z axis upward, so vertical derivative is upper-part |
| 262 |
|
|
% minus lower-part: |
| 263 |
|
|
dSIGMATHETAdz = ( ST(1:nz,:,:) - ST(2:nz+1,:,:) ) ./ dz_3D; |
| 264 |
gmaze |
1.1 |
clear dz_3D ST |
| 265 |
|
|
|
| 266 |
|
|
% Change vertical gridding: |
| 267 |
|
|
dSIGMATHETAdz = ( dSIGMATHETAdz(1:nz-1,:,:) + dSIGMATHETAdz(2:nz,:,:) )./2; |
| 268 |
|
|
|
| 269 |
|
|
if FLpv3 == 1 % Just for full PV |
| 270 |
|
|
|
| 271 |
|
|
%%%%% |
| 272 |
|
|
%% 2: Move ZETA on the same grid: |
| 273 |
|
|
if toshow,disp('Move ZETA on the same grid as dSIGMATHETA/dz'), end |
| 274 |
|
|
Oz = ncOz{4}(:,:,:); |
| 275 |
|
|
% Change horizontal gridding: |
| 276 |
|
|
Oz = ( Oz(:,:,2:nx-1) + Oz(:,:,1:nx-2) )./2; |
| 277 |
|
|
Oz = ( Oz(:,2:ny-1,:) + Oz(:,1:ny-2,:) )./2; |
| 278 |
|
|
|
| 279 |
|
|
end %if FLpv3=1 |
| 280 |
|
|
|
| 281 |
|
|
%%%%% |
| 282 |
|
|
%% 3: Make them having same limits: |
| 283 |
|
|
%% (Keep points where both fields are defined) |
| 284 |
|
|
if FLpv3 == 1 |
| 285 |
|
|
Oz = squeeze(Oz(2:nz,:,:)); |
| 286 |
|
|
end %if |
| 287 |
|
|
dSIGMATHETAdz = squeeze( dSIGMATHETAdz (:,2:ny-1,2:nx-1) ); |
| 288 |
|
|
|
| 289 |
|
|
|
| 290 |
|
|
%%%%% |
| 291 |
|
|
%% 4: Last, compute third term of PV: |
| 292 |
|
|
% and defined axis fron the ST grid: |
| 293 |
|
|
PV3_lon = STlon(2:length(STlon)-1); |
| 294 |
|
|
PV3_lat = STlat(2:length(STlat)-1); |
| 295 |
|
|
PV3_dpt = STdpt(2:length(STdpt)-1); |
| 296 |
|
|
|
| 297 |
|
|
% Planetary vorticity: |
| 298 |
|
|
f = 2*(2*pi/86400)*sin(PV3_lat*pi/180); |
| 299 |
|
|
[a f c]=meshgrid(PV3_lon,f,PV3_dpt); clear a c |
| 300 |
|
|
f = permute(f,[3 1 2]); |
| 301 |
|
|
|
| 302 |
|
|
% Third term of PV: |
| 303 |
|
|
if FLpv3 == 2 |
| 304 |
|
|
% Compute simple PV, just with planetary vorticity: |
| 305 |
|
|
PV3 = f.*dSIGMATHETAdz ; |
| 306 |
|
|
else |
| 307 |
|
|
% To compute full PV: |
| 308 |
|
|
PV3 = (f+Oz).*dSIGMATHETAdz ; |
| 309 |
|
|
end |
| 310 |
|
|
|
| 311 |
|
|
|
| 312 |
|
|
|
| 313 |
|
|
clear nx ny nz dz ST Oz dSIGMATHETAdz f |
| 314 |
|
|
end %if FLpv3 |
| 315 |
|
|
|
| 316 |
|
|
|
| 317 |
|
|
|
| 318 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 319 |
|
|
% Then, compute potential vorticity: |
| 320 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 321 |
|
|
if toshow,disp('Summing terms to get PV:'),end |
| 322 |
|
|
% If we had computed the first term: |
| 323 |
|
|
if FLpv1 |
| 324 |
|
|
if toshow,disp('First term alone'),end |
| 325 |
|
|
PV = PV1; |
| 326 |
|
|
PV_lon=PV1_lon;PV_lat=PV1_lat;PV_dpt=PV1_dpt; |
| 327 |
|
|
end |
| 328 |
|
|
% If we had computed the second term: |
| 329 |
|
|
if FLpv2 |
| 330 |
|
|
if exist('PV') % and the first one: |
| 331 |
|
|
if toshow,disp('Second term added to first one'),end |
| 332 |
|
|
PV = PV + PV2; |
| 333 |
|
|
else % or not: |
| 334 |
|
|
if toshow,disp('Second term alone'),end |
| 335 |
|
|
PV = PV2; |
| 336 |
|
|
PV_lon=PV2_lon;PV_lat=PV2_lat;PV_dpt=PV2_dpt; |
| 337 |
|
|
end |
| 338 |
|
|
end |
| 339 |
|
|
% If we had computed the third term: |
| 340 |
|
|
if FLpv3 |
| 341 |
|
|
if exist('PV') % and one of the first or second one: |
| 342 |
|
|
if toshow,disp('Third term added to first and/or second one(s)'),end |
| 343 |
|
|
PV = PV + PV3; |
| 344 |
|
|
else % or not: |
| 345 |
|
|
if toshow,disp('Third term alone'),end |
| 346 |
|
|
PV = PV3; |
| 347 |
|
|
PV_lon=PV3_lon;PV_lat=PV3_lat;PV_dpt=PV3_dpt; |
| 348 |
|
|
end |
| 349 |
|
|
end |
| 350 |
|
|
|
| 351 |
|
|
|
| 352 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 353 |
|
|
% Record: |
| 354 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 355 |
|
|
if toshow,disp('Now reccording PV file ...'),end |
| 356 |
|
|
|
| 357 |
|
|
% General informations: |
| 358 |
|
|
if FLpv3 == 1 |
| 359 |
|
|
netfil = strcat('PV','.',netcdf_domain,'.',netcdf_suff); |
| 360 |
|
|
units = 'kg/s/m^4'; |
| 361 |
|
|
ncid = 'PV'; |
| 362 |
|
|
longname = 'Potential vorticity'; |
| 363 |
|
|
uniquename = 'potential_vorticity'; |
| 364 |
|
|
else |
| 365 |
|
|
netfil = strcat('splPV','.',netcdf_domain,'.',netcdf_suff); |
| 366 |
|
|
units = 'kg/s/m^4'; |
| 367 |
|
|
ncid = 'splPV'; |
| 368 |
|
|
longname = 'Simple Potential vorticity'; |
| 369 |
|
|
uniquename = 'simple_potential_vorticity'; |
| 370 |
|
|
end %if |
| 371 |
|
|
|
| 372 |
|
|
% Open output file: |
| 373 |
|
|
nc = netcdf(strcat(pathname,sla,netfil),'clobber'); |
| 374 |
|
|
|
| 375 |
|
|
% Define axis: |
| 376 |
|
|
nc('X') = length(PV_lon); |
| 377 |
|
|
nc('Y') = length(PV_lat); |
| 378 |
|
|
nc('Z') = length(PV_dpt); |
| 379 |
|
|
|
| 380 |
|
|
nc{'X'} = 'X'; |
| 381 |
|
|
nc{'Y'} = 'Y'; |
| 382 |
|
|
nc{'Z'} = 'Z'; |
| 383 |
|
|
|
| 384 |
|
|
nc{'X'} = ncfloat('X'); |
| 385 |
|
|
nc{'X'}.uniquename = ncchar('X'); |
| 386 |
|
|
nc{'X'}.long_name = ncchar('longitude'); |
| 387 |
|
|
nc{'X'}.gridtype = nclong(0); |
| 388 |
|
|
nc{'X'}.units = ncchar('degrees_east'); |
| 389 |
|
|
nc{'X'}(:) = PV_lon; |
| 390 |
|
|
|
| 391 |
|
|
nc{'Y'} = ncfloat('Y'); |
| 392 |
|
|
nc{'Y'}.uniquename = ncchar('Y'); |
| 393 |
|
|
nc{'Y'}.long_name = ncchar('latitude'); |
| 394 |
|
|
nc{'Y'}.gridtype = nclong(0); |
| 395 |
|
|
nc{'Y'}.units = ncchar('degrees_north'); |
| 396 |
|
|
nc{'Y'}(:) = PV_lat; |
| 397 |
|
|
|
| 398 |
|
|
nc{'Z'} = ncfloat('Z'); |
| 399 |
|
|
nc{'Z'}.uniquename = ncchar('Z'); |
| 400 |
|
|
nc{'Z'}.long_name = ncchar('depth'); |
| 401 |
|
|
nc{'Z'}.gridtype = nclong(0); |
| 402 |
|
|
nc{'Z'}.units = ncchar('m'); |
| 403 |
|
|
nc{'Z'}(:) = PV_dpt; |
| 404 |
|
|
|
| 405 |
|
|
% And main field: |
| 406 |
|
|
nc{ncid} = ncfloat('Z', 'Y', 'X'); |
| 407 |
|
|
nc{ncid}.units = ncchar(units); |
| 408 |
|
|
nc{ncid}.missing_value = ncfloat(NaN); |
| 409 |
|
|
nc{ncid}.FillValue_ = ncfloat(NaN); |
| 410 |
|
|
nc{ncid}.longname = ncchar(longname); |
| 411 |
|
|
nc{ncid}.uniquename = ncchar(uniquename); |
| 412 |
|
|
nc{ncid}(:,:,:) = PV; |
| 413 |
|
|
|
| 414 |
|
|
nc=close(nc); |
| 415 |
gmaze |
1.6 |
if FLpv3 ~= 2 |
| 416 |
|
|
close(ncOx); |
| 417 |
|
|
close(ncOy); |
| 418 |
|
|
close(ncOz); |
| 419 |
|
|
end |
| 420 |
gmaze |
1.5 |
close(ncST); |
| 421 |
gmaze |
1.4 |
|
| 422 |
|
|
% Outputs: |
| 423 |
gmaze |
1.5 |
OUT = struct('PV',PV,'dpt',PV_dpt,'lat',PV_lat,'lon',PV_lon); |
| 424 |
gmaze |
1.4 |
switch nargout |
| 425 |
|
|
case 1 |
| 426 |
gmaze |
1.5 |
varargout(1) = {OUT}; |
| 427 |
gmaze |
1.6 |
case 2 |
| 428 |
|
|
varargout(1) = {struct('PV1',PV1,'dpt',PV1_dpt,'lat',PV1_lat,'lon',PV1_lon)}; |
| 429 |
|
|
varargout(2) = {struct('PV2',PV2,'dpt',PV2_dpt,'lat',PV2_lat,'lon',PV2_lon)}; |
| 430 |
|
|
case 3 |
| 431 |
|
|
varargout(1) = {struct('PV1',PV1,'dpt',PV1_dpt,'lat',PV1_lat,'lon',PV1_lon)}; |
| 432 |
|
|
varargout(2) = {struct('PV2',PV2,'dpt',PV2_dpt,'lat',PV2_lat,'lon',PV2_lon)}; |
| 433 |
|
|
varargout(3) = {struct('PV3',PV3,'dpt',PV3_dpt,'lat',PV3_lat,'lon',PV3_lon)}; |
| 434 |
gmaze |
1.4 |
end |