| 1 |
% |
| 2 |
% [] = A_compute_potential_density(SNAPSHOT) |
| 3 |
% |
| 4 |
% For a time snapshot, this program computes the |
| 5 |
% 3D potential density from potential temperature and salinity. |
| 6 |
% THETA and SALTanom are supposed to be defined on the same |
| 7 |
% domain and grid. |
| 8 |
% |
| 9 |
% Files names are: |
| 10 |
% INPUT: |
| 11 |
% ./netcdf-files/<SNAPSHOT>/<netcdf_THETA>.<netcdf_domain>.<netcdf_suff> |
| 12 |
% ./netcdf-files/<SNAPSHOT>/<netcdf_SALTanom>.<netcdf_domain>.<netcdf_suff> |
| 13 |
% OUPUT: |
| 14 |
% ./netcdf-files/<SNAPSHOT>/SIGMATHETA.<netcdf_domain>.<netcdf_suff> |
| 15 |
% |
| 16 |
% 06/07/2006 |
| 17 |
% gmaze@mit.edu |
| 18 |
% |
| 19 |
|
| 20 |
|
| 21 |
function A_compute_potential_density(snapshot) |
| 22 |
|
| 23 |
|
| 24 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 25 |
%% Setup |
| 26 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 27 |
global sla netcdf_THETA netcdf_SALTanom netcdf_domain netcdf_suff |
| 28 |
pv_checkpath |
| 29 |
|
| 30 |
|
| 31 |
%% THETA and SALTanom files name: |
| 32 |
filTHETA = strcat(netcdf_THETA ,'.',netcdf_domain); |
| 33 |
filSALTa = strcat(netcdf_SALTanom,'.',netcdf_domain); |
| 34 |
|
| 35 |
%% Path and extension to find them: |
| 36 |
pathname = strcat('netcdf-files',sla,snapshot); |
| 37 |
ext = strcat('.',netcdf_suff); |
| 38 |
|
| 39 |
%% Load netcdf files: |
| 40 |
ferfile = strcat(pathname,sla,filTHETA,ext); |
| 41 |
ncTHETA = netcdf(ferfile,'nowrite'); |
| 42 |
THETAvariables = var(ncTHETA); |
| 43 |
|
| 44 |
ferfile = strcat(pathname,sla,filSALTa,ext); |
| 45 |
ncSALTa = netcdf(ferfile,'nowrite'); |
| 46 |
SALTavariables = var(ncSALTa); |
| 47 |
|
| 48 |
%% Gridding: |
| 49 |
% Don't care about the grid here ! |
| 50 |
% SALTanom and THETA are normaly defined on the same grid |
| 51 |
% So we compute sigma_theta on it. |
| 52 |
|
| 53 |
%% Flags: |
| 54 |
global toshow % Turn to 1 to follow the computing process |
| 55 |
|
| 56 |
|
| 57 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 58 |
%% Now we compute potential density |
| 59 |
%% The routine used is densjmd95.m |
| 60 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 61 |
|
| 62 |
% Axis (usual netcdf files): |
| 63 |
if toshow,disp('Dim');end |
| 64 |
[lon lat dpt] = coordfromnc(ncTHETA); |
| 65 |
nx = length(lon); |
| 66 |
ny = length(lat); |
| 67 |
nz = length(dpt); |
| 68 |
|
| 69 |
% Pre-allocate: |
| 70 |
if toshow,disp('Pre-allocate');end |
| 71 |
SIGMATHETA = zeros(nz,ny,nx); |
| 72 |
|
| 73 |
% Then compute potential density SIGMATHETA: |
| 74 |
for iz = 1 : nz |
| 75 |
if toshow,disp(strcat('Compute potential density at level:',num2str(iz),'/',num2str(nz)));end |
| 76 |
|
| 77 |
S = SALTavariables{4}(iz,:,:) + 35; % Move the anom to an absolute field |
| 78 |
T = THETAvariables{4}(iz,:,:); |
| 79 |
SIGMATHETA(iz,:,:) = densjmd95(S,T,zeros(ny,nx)) - 1000; |
| 80 |
|
| 81 |
% Eventualy make a plot of the field: |
| 82 |
if 0 |
| 83 |
clf;pcolor(squeeze(SIGMATHETA(iz,:,:))); |
| 84 |
shading interp;caxis([10 40]);colorbar |
| 85 |
drawnow |
| 86 |
M(iz)=getframe; % To make a video |
| 87 |
end %if1 |
| 88 |
end %for iz |
| 89 |
|
| 90 |
|
| 91 |
|
| 92 |
|
| 93 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 94 |
%% Record output: |
| 95 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 96 |
|
| 97 |
% General informations: |
| 98 |
netfil = strcat('SIGMATHETA','.',netcdf_domain,'.',netcdf_suff); |
| 99 |
units = 'kg/m^3-1000'; |
| 100 |
ncid = 'ST'; |
| 101 |
longname = 'Potential Density'; |
| 102 |
uniquename = 'potential_density'; |
| 103 |
|
| 104 |
% Open output file: |
| 105 |
nc = netcdf(strcat(pathname,sla,netfil),'clobber'); |
| 106 |
|
| 107 |
% Define axis: |
| 108 |
nc('X') = nx; |
| 109 |
nc('Y') = ny; |
| 110 |
nc('Z') = nz; |
| 111 |
|
| 112 |
nc{'X'} = 'X'; |
| 113 |
nc{'Y'} = 'Y'; |
| 114 |
nc{'Z'} = 'Z'; |
| 115 |
|
| 116 |
nc{'X'} = ncfloat('X'); |
| 117 |
nc{'X'}.uniquename = ncchar('X'); |
| 118 |
nc{'X'}.long_name = ncchar('longitude'); |
| 119 |
nc{'X'}.gridtype = nclong(0); |
| 120 |
nc{'X'}.units = ncchar('degrees_east'); |
| 121 |
nc{'X'}(:) = lon; |
| 122 |
|
| 123 |
nc{'Y'} = ncfloat('Y'); |
| 124 |
nc{'Y'}.uniquename = ncchar('Y'); |
| 125 |
nc{'Y'}.long_name = ncchar('latitude'); |
| 126 |
nc{'Y'}.gridtype = nclong(0); |
| 127 |
nc{'Y'}.units = ncchar('degrees_north'); |
| 128 |
nc{'Y'}(:) = lat; |
| 129 |
|
| 130 |
nc{'Z'} = ncfloat('Z'); |
| 131 |
nc{'Z'}.uniquename = ncchar('Z'); |
| 132 |
nc{'Z'}.long_name = ncchar('depth'); |
| 133 |
nc{'Z'}.gridtype = nclong(0); |
| 134 |
nc{'Z'}.units = ncchar('m'); |
| 135 |
nc{'Z'}(:) = dpt; |
| 136 |
|
| 137 |
% And main field: |
| 138 |
nc{ncid} = ncfloat('Z', 'Y', 'X'); |
| 139 |
nc{ncid}.units = ncchar(units); |
| 140 |
nc{ncid}.missing_value = ncfloat(NaN); |
| 141 |
nc{ncid}.FillValue_ = ncfloat(NaN); |
| 142 |
nc{ncid}.longname = ncchar(longname); |
| 143 |
nc{ncid}.uniquename = ncchar(uniquename); |
| 144 |
nc{ncid}(:,:,:) = SIGMATHETA; |
| 145 |
|
| 146 |
nc=close(nc); |
| 147 |
|