| 1 | 
gmaze | 
1.1 | 
% | 
| 2 | 
gmaze | 
1.5 | 
% [ST] = A_compute_potential_density(SNAPSHOT) | 
| 3 | 
gmaze | 
1.1 | 
% | 
| 4 | 
  | 
  | 
% For a time snapshot, this program computes the  | 
| 5 | 
  | 
  | 
% 3D potential density from potential temperature and salinity. | 
| 6 | 
  | 
  | 
% THETA and SALTanom are supposed to be defined on the same  | 
| 7 | 
  | 
  | 
% domain and grid. | 
| 8 | 
gmaze | 
1.4 | 
% SALTanom is by default a salinity anomaly vs 35. | 
| 9 | 
  | 
  | 
% If not, (is absolute value) set the global variable is_SALTanom to 0 | 
| 10 | 
  | 
  | 
%  | 
| 11 | 
gmaze | 
1.3 | 
% Files names are: | 
| 12 | 
  | 
  | 
% INPUT: | 
| 13 | 
  | 
  | 
% ./netcdf-files/<SNAPSHOT>/<netcdf_THETA>.<netcdf_domain>.<netcdf_suff> | 
| 14 | 
  | 
  | 
% ./netcdf-files/<SNAPSHOT>/<netcdf_SALTanom>.<netcdf_domain>.<netcdf_suff> | 
| 15 | 
  | 
  | 
% OUPUT: | 
| 16 | 
  | 
  | 
% ./netcdf-files/<SNAPSHOT>/SIGMATHETA.<netcdf_domain>.<netcdf_suff> | 
| 17 | 
  | 
  | 
% | 
| 18 | 
gmaze | 
1.1 | 
% 06/07/2006 | 
| 19 | 
  | 
  | 
% gmaze@mit.edu | 
| 20 | 
  | 
  | 
% | 
| 21 | 
  | 
  | 
 | 
| 22 | 
  | 
  | 
   | 
| 23 | 
gmaze | 
1.5 | 
function varargout = A_compute_potential_density(snapshot) | 
| 24 | 
gmaze | 
1.1 | 
 | 
| 25 | 
  | 
  | 
 | 
| 26 | 
  | 
  | 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 27 | 
  | 
  | 
%% Setup | 
| 28 | 
  | 
  | 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 29 | 
  | 
  | 
global sla netcdf_THETA netcdf_SALTanom netcdf_domain netcdf_suff | 
| 30 | 
  | 
  | 
pv_checkpath | 
| 31 | 
  | 
  | 
 | 
| 32 | 
  | 
  | 
 | 
| 33 | 
  | 
  | 
%% THETA and SALTanom files name: | 
| 34 | 
  | 
  | 
filTHETA = strcat(netcdf_THETA   ,'.',netcdf_domain); | 
| 35 | 
  | 
  | 
filSALTa = strcat(netcdf_SALTanom,'.',netcdf_domain); | 
| 36 | 
  | 
  | 
 | 
| 37 | 
  | 
  | 
%% Path and extension to find them: | 
| 38 | 
  | 
  | 
pathname = strcat('netcdf-files',sla,snapshot); | 
| 39 | 
  | 
  | 
ext      = strcat('.',netcdf_suff); | 
| 40 | 
  | 
  | 
 | 
| 41 | 
  | 
  | 
%% Load netcdf files: | 
| 42 | 
  | 
  | 
ferfile = strcat(pathname,sla,filTHETA,ext); | 
| 43 | 
  | 
  | 
ncTHETA = netcdf(ferfile,'nowrite'); | 
| 44 | 
  | 
  | 
THETAvariables = var(ncTHETA); | 
| 45 | 
  | 
  | 
 | 
| 46 | 
  | 
  | 
ferfile = strcat(pathname,sla,filSALTa,ext); | 
| 47 | 
  | 
  | 
ncSALTa = netcdf(ferfile,'nowrite'); | 
| 48 | 
  | 
  | 
SALTavariables = var(ncSALTa); | 
| 49 | 
  | 
  | 
 | 
| 50 | 
gmaze | 
1.4 | 
global is_SALTanom | 
| 51 | 
  | 
  | 
if exist('is_SALTanom') | 
| 52 | 
  | 
  | 
  if is_SALTanom == 1 | 
| 53 | 
  | 
  | 
    bS = 35; | 
| 54 | 
  | 
  | 
  else | 
| 55 | 
  | 
  | 
    bS = 0; | 
| 56 | 
  | 
  | 
  end | 
| 57 | 
  | 
  | 
end | 
| 58 | 
  | 
  | 
 | 
| 59 | 
gmaze | 
1.1 | 
%% Gridding: | 
| 60 | 
  | 
  | 
% Don't care about the grid here ! | 
| 61 | 
  | 
  | 
% SALTanom and THETA are normaly defined on the same grid | 
| 62 | 
  | 
  | 
% So we compute sigma_theta on it. | 
| 63 | 
  | 
  | 
 | 
| 64 | 
  | 
  | 
%% Flags: | 
| 65 | 
  | 
  | 
global toshow % Turn to 1 to follow the computing process | 
| 66 | 
  | 
  | 
 | 
| 67 | 
  | 
  | 
 | 
| 68 | 
  | 
  | 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 69 | 
  | 
  | 
%% Now we compute potential density | 
| 70 | 
  | 
  | 
%% The routine used is densjmd95.m | 
| 71 | 
  | 
  | 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 72 | 
  | 
  | 
 | 
| 73 | 
  | 
  | 
% Axis (usual netcdf files): | 
| 74 | 
  | 
  | 
if toshow,disp('Dim');end | 
| 75 | 
  | 
  | 
[lon lat dpt] = coordfromnc(ncTHETA); | 
| 76 | 
  | 
  | 
nx = length(lon); | 
| 77 | 
  | 
  | 
ny = length(lat); | 
| 78 | 
  | 
  | 
nz = length(dpt); | 
| 79 | 
  | 
  | 
 | 
| 80 | 
  | 
  | 
% Pre-allocate: | 
| 81 | 
  | 
  | 
if toshow,disp('Pre-allocate');end | 
| 82 | 
  | 
  | 
SIGMATHETA = zeros(nz,ny,nx); | 
| 83 | 
  | 
  | 
 | 
| 84 | 
  | 
  | 
% Then compute potential density SIGMATHETA: | 
| 85 | 
  | 
  | 
for iz = 1 : nz | 
| 86 | 
  | 
  | 
  if toshow,disp(strcat('Compute potential density at level:',num2str(iz),'/',num2str(nz)));end | 
| 87 | 
  | 
  | 
   | 
| 88 | 
gmaze | 
1.4 | 
  S = SALTavariables{4}(iz,:,:) + bS; % Evantualy move the anom to an absolute field | 
| 89 | 
gmaze | 
1.1 | 
  T = THETAvariables{4}(iz,:,:); | 
| 90 | 
  | 
  | 
  SIGMATHETA(iz,:,:) = densjmd95(S,T,zeros(ny,nx)) - 1000; | 
| 91 | 
gmaze | 
1.2 | 
    | 
| 92 | 
gmaze | 
1.1 | 
  % Eventualy make a plot of the field: | 
| 93 | 
gmaze | 
1.4 | 
  if 0 & iz==1 | 
| 94 | 
gmaze | 
1.1 | 
    clf;pcolor(squeeze(SIGMATHETA(iz,:,:))); | 
| 95 | 
gmaze | 
1.4 | 
    shading interp;caxis([20 30]);colorbar | 
| 96 | 
gmaze | 
1.1 | 
    drawnow | 
| 97 | 
gmaze | 
1.4 | 
    %M(iz)=getframe; % To make a video | 
| 98 | 
gmaze | 
1.1 | 
  end %if1 | 
| 99 | 
  | 
  | 
end %for iz | 
| 100 | 
  | 
  | 
 | 
| 101 | 
  | 
  | 
 | 
| 102 | 
  | 
  | 
 | 
| 103 | 
  | 
  | 
 | 
| 104 | 
  | 
  | 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 105 | 
  | 
  | 
%% Record output: | 
| 106 | 
  | 
  | 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
| 107 | 
  | 
  | 
 | 
| 108 | 
  | 
  | 
% General informations:  | 
| 109 | 
  | 
  | 
netfil     = strcat('SIGMATHETA','.',netcdf_domain,'.',netcdf_suff); | 
| 110 | 
  | 
  | 
units      = 'kg/m^3-1000'; | 
| 111 | 
  | 
  | 
ncid       = 'ST'; | 
| 112 | 
  | 
  | 
longname   = 'Potential Density'; | 
| 113 | 
  | 
  | 
uniquename = 'potential_density'; | 
| 114 | 
  | 
  | 
 | 
| 115 | 
  | 
  | 
% Open output file: | 
| 116 | 
  | 
  | 
nc = netcdf(strcat(pathname,sla,netfil),'clobber'); | 
| 117 | 
  | 
  | 
 | 
| 118 | 
  | 
  | 
% Define axis: | 
| 119 | 
  | 
  | 
nc('X') = nx; | 
| 120 | 
  | 
  | 
nc('Y') = ny; | 
| 121 | 
  | 
  | 
nc('Z') = nz; | 
| 122 | 
  | 
  | 
 | 
| 123 | 
  | 
  | 
nc{'X'} = 'X'; | 
| 124 | 
  | 
  | 
nc{'Y'} = 'Y'; | 
| 125 | 
  | 
  | 
nc{'Z'} = 'Z'; | 
| 126 | 
  | 
  | 
 | 
| 127 | 
  | 
  | 
nc{'X'}            = ncfloat('X'); | 
| 128 | 
  | 
  | 
nc{'X'}.uniquename = ncchar('X'); | 
| 129 | 
  | 
  | 
nc{'X'}.long_name  = ncchar('longitude'); | 
| 130 | 
  | 
  | 
nc{'X'}.gridtype   = nclong(0); | 
| 131 | 
  | 
  | 
nc{'X'}.units      = ncchar('degrees_east'); | 
| 132 | 
  | 
  | 
nc{'X'}(:)         = lon; | 
| 133 | 
  | 
  | 
 | 
| 134 | 
  | 
  | 
nc{'Y'}            = ncfloat('Y');  | 
| 135 | 
  | 
  | 
nc{'Y'}.uniquename = ncchar('Y'); | 
| 136 | 
  | 
  | 
nc{'Y'}.long_name  = ncchar('latitude'); | 
| 137 | 
  | 
  | 
nc{'Y'}.gridtype   = nclong(0); | 
| 138 | 
  | 
  | 
nc{'Y'}.units      = ncchar('degrees_north'); | 
| 139 | 
  | 
  | 
nc{'Y'}(:)         = lat; | 
| 140 | 
  | 
  | 
  | 
| 141 | 
  | 
  | 
nc{'Z'}            = ncfloat('Z'); | 
| 142 | 
  | 
  | 
nc{'Z'}.uniquename = ncchar('Z'); | 
| 143 | 
  | 
  | 
nc{'Z'}.long_name  = ncchar('depth'); | 
| 144 | 
  | 
  | 
nc{'Z'}.gridtype   = nclong(0); | 
| 145 | 
  | 
  | 
nc{'Z'}.units      = ncchar('m'); | 
| 146 | 
  | 
  | 
nc{'Z'}(:)         = dpt; | 
| 147 | 
  | 
  | 
 | 
| 148 | 
  | 
  | 
% And main field: | 
| 149 | 
  | 
  | 
nc{ncid}               = ncfloat('Z', 'Y', 'X');  | 
| 150 | 
  | 
  | 
nc{ncid}.units         = ncchar(units); | 
| 151 | 
  | 
  | 
nc{ncid}.missing_value = ncfloat(NaN); | 
| 152 | 
  | 
  | 
nc{ncid}.FillValue_    = ncfloat(NaN); | 
| 153 | 
  | 
  | 
nc{ncid}.longname      = ncchar(longname); | 
| 154 | 
  | 
  | 
nc{ncid}.uniquename    = ncchar(uniquename); | 
| 155 | 
  | 
  | 
nc{ncid}(:,:,:)        = SIGMATHETA; | 
| 156 | 
  | 
  | 
 | 
| 157 | 
  | 
  | 
nc=close(nc); | 
| 158 | 
gmaze | 
1.5 | 
close(ncTHETA); | 
| 159 | 
  | 
  | 
close(ncSALTa); | 
| 160 | 
gmaze | 
1.1 | 
 | 
| 161 | 
gmaze | 
1.5 | 
% Outputs: | 
| 162 | 
  | 
  | 
output = struct('SIGMATHETA',SIGMATHETA,'dpt',dpt,'lat',lat,'lon',lon); | 
| 163 | 
gmaze | 
1.4 | 
switch nargout | 
| 164 | 
  | 
  | 
 case 1 | 
| 165 | 
gmaze | 
1.5 | 
  varargout(1) = {output}; | 
| 166 | 
gmaze | 
1.4 | 
end |