
ECCO v4 development notes

Gaël Forget

Department of Earth, Atmospheric and Planetary Sciences

Massachusetts Institute of Technology

June 8, 2015

abstract

These notes pertain to the ECCO v4 state estimate, model setup, and associated codes (Forget et al.,
2015). Section 1 points to the other elements of documentation that are available online, and
associated download procedures. Section 2 provides guidance to ECCO v4 users interested in
operating the ECCO v4 model set-up and/or reproducing the ECCO v4 solution. Section 3
documents the revamped and augmented estimation modules of MITgcm. Some of the included
material is expected to move to to the MITgcm manual.

Contents

1 downloads 3
1.1 MITgcm . 3
1.2 ECCO version 4 setup . 3
1.3 solution . 4
1.4 analysis tools . 4

2 MITgcm runs 6
2.1 regression tests . 6
2.2 full ECCO v4 runs . 6

3 re-implemented ecco and ctrl packages 11
3.1 pkg/ecco run-time parameters . 12
3.2 pkg/ctrl run-time parameters . 14
3.3 MITgcm compiling options . 14

1

http://mitgcm.org/public/r2_manual/latest/online_documents/manual.pdf

References

Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: Ecco
version 4: an integrated framework for non-linear inverse modeling and global ocean state
estimation. Geoscientific Model Development Discussions, 8 (5), 3653–3743, doi:10.5194/
gmdd-8-3653-2015, URL http://www.geosci-model-dev-discuss.net/8/3653/2015/.

2

http://www.geosci-model-dev-discuss.net/8/3653/2015/

1 downloads1

Here I document locations and directions to download the MITgcm, the ECCO v4 model setup,2

the ECCO v4 state estimate output, and related diagnostic matlab tools.3

1.1 MITgcm4

Pre-requisites are cvs, gcc, gfortran (or alternatives), and mpi (only for parallel runs). Then :5

• The MITgcm web-page is mitgcm.org6

• Install MITgcm using cvs as explained @ cvs7

• Run MITgcm using testreport (for one experiment) as explained @ manual, howto8

For example, my laptop setup, including mpi and netcdf, involved the following mac ports :9

• cvs @1.11.23 1 (active)10

• wget @1.14 5+ssl (active)11

• gcc48 @4.8.2 0 (active)12

• mpich-default @3.0.4 9+gcc48 (active)13

• mpich-gcc48 @3.0.4 9+fortran (active)14

• netcdf @4.3.0 2+dap+netcdf4 (active)15

• netcdf-fortran @4.2 10+gcc48 (active)16

Side note – overridding the default mac gcc and mpich with the above, further requires17

• sudo port select –set gcc mp-gcc4818

• sudo port select –set mpich mpich-gcc48-fortran19

Side note – using mpi and netcdf within MITgcm requires two environment variables :20

• export MPI INC DIR=/opt/local/include21

• export NETCDF ROOT=/opt/local22

1.2 ECCO version 4 setup23

Pre-requisites are MITgcm (see above) and mpi (except for small setup). User can then in-24

stall the ECCO v4 setups, as explained @ README, using the setup these exps.csh shell25

script. This script downloads global oce cs32/ (small setup), global oce llc90/ (bigger setup)26

and global oce input fields.tar.gz binary model inputs to global oce tmp download/ (local sub-27

directory). User can then move these directories to MITgcm/verification/ to allow for automated28

execution by testreport using genmake2 (Fig.1).29

3

http://mitgcm.org/
http://mitgcm.org/public/using_cvs.html
http://mitgcm.org/public/r2_manual/latest/online_documents/manual.pdf
http://mitgcm.org/public/devel_HOWTO/devel_HOWTO.pdf
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/README?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/setup_these_exps.csh?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/
http://mitgcm.org/~gforget/
http://mitgcm.org/viewvc/MITgcm/MITgcm/verification/testreport?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm/tools/genmake2?view=markup

Figure 1: MITgcm directory structure downloaded using cvs. The ECCO v4 directories indicated with
”+” were downloaded separately using setup these exps.csh script and moved to MITgcm/verification/.

MITgcm/

model/ (core of MITgcm)

pkg/ (MITgcm modules)

verification/

testreport (shell script)

aim.5l cs (mitgcm regression test)

+ global oce cs32/ (for laptops)

+ global oce llc90/ (for computers)

+ global oce input fields/ (inputs)

hs94.128x64x5 (mitgcm regression test)

...

tools/

genmake2 (shell script)

build options (wrt compilers)

...

1.3 solution30

The release 1 solution directory linked to ecco-group.org contains :31

• 20 year solution output : readme, fields, profiles, grid32

• additional input files required to run the full 20 year solution (coming soon...).33

1.4 analysis tools34

Tools (e.g. matlab scripts) available to analyze the release1 solution, and others, include :35

• download, set-up gcmfaces +MITprof using shell script or manually (see getting started.m)36

• download MITgcm/utils using cvs (basic functionalities only).37

The so-called standard analysis.pdf is generated in matlab by means of diags driver.m and38

diags driver tex.m in the following sequence :39

diags_driver(’release1/’,’release1/mat/’,1992:2011);40

diags_driver_tex(’release1/mat/’,{},’release1/tex/standardAnalysis’);41

assuming the conventional directory structure shown in Fig.2.42

4

http://mitgcm.org/public/using_cvs.html
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/setup_these_exps.csh?view=markup
http://ecco-group.org/
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/README.docx
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/nctiles
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/MITprof
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/ancillary_data/GRID_r1.tar
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/matlab_class/gcmfaces.pdf
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/profilesMatlabProcessing/README?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/setup_gcmfaces_and_mitprof.csh?view=markup
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/getting_started.m
http://mitgcm.org/viewvc/MITgcm/MITgcm/utils/
http://mitgcm.org/public/using_cvs.html
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/ancillary_data/standardAnalysis.pdf
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/matlab_class/gcmfaces_diags/diags_driver.m ?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/matlab_class/gcmfaces_diags/diags_driver_tex.m ?view=markup

Figure 2: Directory structure as expected by gcmfaces and MITprof toolboxes. The toolboxes themselves
can be relocated anywhere as long as their locations are included in the matlab path. Advanced analysis
using diags driver.m and diags driver tex.m will respectively generate the mat/ directory (for intermediate
computational results) and the tex/ directory (for standard analysis). This diagnostic process relies on
the depicted organization of GRID/ and solution/ for automation (user will otherwise be prompted to
enter directory names) and depends on downloaded copies of fields to nctiles/ (local subdirectory).

./

gcmfaces/ (matlab toolbox)

sample input/ (binary files)

@gcmfaces/ (matlab codes)

gcmfaces calc/ (matlab codes)

...

MITprof/ (matlab toolbox)

profiles samples/ (netcdf files)

profiles process main v2/ (matlab codes)

profiles stats/ (matlab codes)

...

GRID/ (binary output)

release 1 solution/

diags/ (binary output)

nctiles/ (netcdf output)

MITprof/ (netcdf output)

mat/ (created by gcmfaces)

tex/ (created by gcmfaces)

other solution/

diags/ (binary output)

...

...

5

http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/ancillary_data/standardAnalysis.pdf
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/nctiles

2 MITgcm runs43

Here I document a few procedures, commands and submission scripts that may be relevant to run44

the ECCO v4 MITgcm setup – either in short regression tests or for multi-decadal simulations45

such as the full 20 year state estimate. Downloading MITgcm and the ECCO v4 setups is a46

pre-requisite (section 1.2).47

2.1 regression tests48

MITgcm and ECCO v4 regression tests are run using testreport utility (see Fig.2; howto). Serial49

regression tests can always be executed simply with, e.g.50

./testreport -t global_oce_cs3251

./testreport -skipdir global_oce_llc9052

If something goes wrong and/or interrupts the process it is often safer to clean up experiment53

directories (e.g., by executing ./testreport -clean -t global oce *) and start over. For example,54

the global oce llc90 experiments require 12 processors in forward (96 in adjoint), and may crash55

your laptop if you attempted to run them in serial mode.56

Often in massive computing environments, however, mpi jobs can only be run within a57

queuing system. The, machine specific, submission script in Fig.3 provides an example. It58

contains 3 hard-coded switches : fwdORad = 1 (2 for adjoint); numExp = 1 (2 for llc90);59

excludeMpi = 0 (1 for serial). This script is located and submitted from MITgcm/verification.60

If compute nodes cannot access the remote adjoint compiler (TAF), then proceed in two steps :61

1. compile outside of the queuing system using e.g.62

./testreport -of ../tools/build_options/linux_amd64_ifort+mpi_ice_nas \63

-j 4 -MPI 96 -command ’mpiexec -np TR_NPROC ./mitgcmuv’ \64

-t global_oce_llc90 -norun65

2. Before submiting the Fig.3 script, add -q to the ’opt’ variable to skip compilation.66

Adjoint test require access to the TAF compiler. Then the call to testreport only needs to67

be altered by appending the ’-ad’ option and replacing ‘mitgcmuv’ with ‘mitgcmuv ad’. The68

ECCO v4 regression tests do not include the common, adjoint specific ’code ad/’ directory,69

which is generally un-necessary. Since testreport relies on the existence of ’code ad/’ for its70

adjoint option though, it is necessary to soft link ’code/’ to ’code ad/’ in both global oce cs32/71

and global oce llc90/ to run ’testreport -ad’ on those experiments.72

2.2 full ECCO v4 runs73

Note to self ... 1
74

There are three main differences between regression tests and full model runs (see howto) :75

• compilation and run are done without testreport and with compiler optimization.76

1Mention memory and disk space requirements, and additional input downloads.

6

http://mitgcm.org/public/devel_HOWTO/devel_HOWTO.pdf
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/
http://mitgcm.org/public/devel_HOWTO/devel_HOWTO.pdf

• additional forcing, control vectors and/or observational inputs is necessary.77

• additional memory and/or disk space is often necessary.78

The typical compilation sequence is shown in Fig.4. The tamc.h itXX and profiles.h itXX79

headers allow for additional time steps, and additional in situ data input, respectively. Also note80

that compiling the adjoint requires a TAF license. Once that is done, user creates and enters a81

run directory, links everything into place (see Fig.5), and finally submits a job to the queueing82

system (see Fig.6).83

A mechanism, analogous to testreport but for long runs, has been introduced recently84

(Forget et al., 2015) that is testreport ecco.m run within Matlab, which requires the downloaded85

’MITgcm/verification/global oce llc90/results itXX/’ to be in the Matlab path. By itself is com-86

pares cost functions and global mean time series to the reference state estimate values. These87

can be extended to meridional transports, which requires gcmfaces. The typical call sequence is88

indicated in the help of testreport ecco.m and Fig.7.89

7

http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/results_itXX/testreport_ecco.m?view=markup
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/matlab_class/gcmfaces.pdf
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/results_itXX/testreport_ecco.m?view=markup

Figure 3: Example script to run mpi testreport via a queueing system (machine dependent).

#PBS -S /bin/csh

#PBS -l select=1:ncpus=16:model=ivy+4:ncpus=20:model=ivy

#PBS -l walltime=02:00:00

#PBS -q devel

#PBS -m n

#environment variables and libraries

#---

limit stacksize unlimited

module purge

module load modules comp-intel/2013.1.117 mpi-sgi/mpt.2.10r6 netcdf/4.0

#

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${HOME}/lib

setenv MPI_IB_TIMEOUT 20

setenv MPI_IB_RAILS 2

setenv MPI_IB_FAILOVER 1

setenv MPI_CONNECTIONS_THRESHOLD 2049

#local variables and commands

#--

set fwdORad = 1

set numExp = 1

set excludeMpi = 0

#

if (${numExp} == 1) then

set nameExp = global_oce_cs32

set NBproc = 6

else

set nameExp = global_oce_llc90

set NBproc = 96

endif

#

if (${excludeMpi} == 1) then

set opt = ’-of ../tools/build_options/linux_amd64_ifort -j 4’

else

set opt = ’-of ../tools/build_options/linux_amd64_ifort+mpi_ice_nas -j 4’

endif

#

if (${fwdORad} == 1 && ${excludeMpi} == 0) then

./testreport ${opt} -MPI \

${NBproc} -command ’mpiexec -np TR_NPROC ./mitgcmuv’ -t ${nameExp}

else if (${fwdORad} == 2 && ${excludeMpi} == 0) then

./testreport ${opt} -MPI \

${NBproc} -command ’mpiexec -np TR_NPROC ./mitgcmuv_ad’ -ad -t ${nameExp}

else if (${fwdORad} == 1 && ${excludeMpi} == 1) then

./testreport ${opt} -t ${nameExp}

else if (${fwdORad} == 2 && ${excludeMpi} == 1) then

./testreport ${opt} -ad -t ${nameExp}

endif

exit 8

Figure 4: Compilation directives, outside testreport, for intensive model runs. On a different machine
(computer) another build option file such as linux amd64 gfortran or linux amd64 ifort11 should be used.
To compile the adjoint, users need a TAF license and to replace ‘make -j 4’ with ‘make adall -j 4’. Note :
the ‘-mods=../code’ specification can be omitted if the build directory contains the ‘genmake local’ file).

cd verification/global_oce_llc90/build

../../../tools/genmake2 -optfile=\\

../../../tools/build_options/linux_amd64_ifort+mpi_ice_nas -mpi -mods=../code

make depend

\rm tamc.h profiles.h

cp ../code/tamc.h_itXX tamc.h

cp ../code/profiles.h_itXX profiles.h

make -j 4

Figure 5: Example script to setup the 20 year ECCO v4 state estimate. It is implied that user has filled
directories /bla, /blaa, /blaaa and /blaaa with appropriate forcing, observational, control vector, and
pickup files.

#!/bin/csh -f

set forcingDir = ~/bla

set obsDir = ~/blaa

set ctrlDir = ~/blaaa

set pickDir = ~/blaaaa

source ../input_itXX/prepare_run

cp ../build/mitgcmuv .

\rm pick*ta EIG*

ln -s ${forcingDir}/EIG* .

ln -s ${obsDir}/* .

ln -s ${ctrlDir}/xx* .

ln -s ${pickDir}/pick* .

exit

9

Figure 6: Example script to run the 20 year ECCO v4 state estimate on 96 processors (machine depen-
dent).

PBS -S /bin/csh

#PBS -l select=1:ncpus=16:model=ivy+4:ncpus=20:model=ivy

#PBS -l walltime=12:00:00

#PBS -q long

#environment variables and libraries

#--

limit stacksize unlimited

module purge

module load modules comp-intel/2013.1.117 mpi-sgi/mpt.2.10r6 netcdf/4.0

#

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${HOME}/lib

setenv MPI_IB_TIMEOUT 20

setenv MPI_IB_RAILS 2

setenv MPI_IB_FAILOVER 1

setenv MPI_CONNECTIONS_THRESHOLD 2049

#run MITgcm

#----------------

mpiexec -np 96 dplace -s1 ./mitgcmuv

exit

Figure 7: Calling sequence to be executed form within matlab to verify that their re-run of the 20 year
ECO v4 state estimate is acceptably close to the released state estimate.

addpath ../results_itXX;%necessary .m and .mat files

mytest0=testreport_ecco([],’release1’); mytest0.info.interactive=0;%initialization

mytest=testreport_ecco(mytest0,’release1’,[-1:4],’./’,1);%compute the tests

testreport_ecco(mytest,’release1’);%display the results

%testreport_write(mytest,’myRun’);%save the results to a mat file

10

3 re-implemented ecco and ctrl packages90

State estimation consists in minimizing a least squares distance, J(u), that is defined as91

J(u) =
∑

i

αi × (dTi Ri
−1 di) +

∑

j

βj × (uTj uj) (1)

di = P(mi − oi) (2)

mi = SDM(v) (3)

v = Q(u) (4)

u = R(u′) (5)

where di denotes a set of model-data differences, αi the corresponding multiplier, Ri
−1 the92

corresponding weights, uj a set of non-dimensional controls, βj the corresponding multiplier,93

and additional symbols appearing in Eqs. 2-5 are defined below. The implementation of Eqs.1-94

5 and the adjoint interface within the MITgcm is charted in Fig. 8. A general presentation95

of Eqs.1-5 and Fig. 8 can readily be found in Forget et al. (2015). The focus here is on the96

underlying recent code development in the ‘pkg/ecco’ and ‘pkg/ctrl’ packages of MITgcm. These97

features are now tested daily via global oce cs32/ (adjoint experiment) that will also serve here98

for illustration in this document.99

MITgcm/pkg

autodiff ctrl ecco profiles smooth

interface with
TAF AD tool

checkpointing,
active files,
MPI

adjoint run
settings

uncertain
parameters

forward model
adjustments

cost function

uncertain
gridded data

time-averaged
model fields

cost function

uncertain ob-
served profiles

sub-sampled
model profiles

cost function

diffusion-
based
smoother

covariance
modeling

Figure 8: Chart of the organization and roles of MITgcm estimation modules. Additional details are
reported in the MITgcm manual, Forget et al. (2015), and section 3.

11

http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/public/r2_manual/latest/online_documents/manual.pdf

3.1 pkg/ecco run-time parameters100

Note to self ... 2
101

Model counterparts (mi) to observational data (oi) derive from control parameters (v)102

through the model dynamics (M), diagnostic computations (D), and averaging (or subsampling103

in ‘pkg/profiles’) in space and time (S). The physical variable in mi is specified at run time via104

the first characters in ‘gencost barfile’ (to match the observed variable in oi) as illustrated in105

this data.ecco and that data.ecco. The list of implemented variables as of the MITgcm check-106

point c65l consists of ‘eta’, ‘sst’, ‘sss’, ‘bp’, ‘tauZon’, ‘tauMer’, ‘theta’, ‘salt’ (list obtained by:107

grep gencost barfile pkg/ecco/cost gencost customize.F). In the case of three dimensional vari-108

ables (e.g. ‘theta’ or ‘salt’) the ‘gencost is3d’ run-time option must be set to .TRUE. (it .FALSE.109

by default). The file name for the observational fields (oi) and the model-data uncertainty field110

(
√
Ri) are specified at run time via ‘gencost datafile’ and ‘gencost errfile’ respectively. The cost111

function multiplier (αi) further needs to be specified by ‘mult gencost’ (it is 0. by default).112

Both D and S in Eq.3 are mainly carried out as the forward model steps through time,113

respectively by ecco phys.F and cost averagesgeneric.F, and mi is written to file periodically.114

mi and oi normally are time series of daily or monthly averages, as specified at run time via115

‘gencost avgperiod’. However dense time series of model time steps can also be employed for116

testing purposes as illustrated in this data.ecco. Furthermore climatologies of mi can be formed117

from its time series by cost genread.F to allow for comparison with observational oi climatologies.118

This part of the mi processing is carried out after the full time series has been written to file.119

It is activated via the ‘gencost preproc’ option as illustrated in this data.ecco.120

Model-data misfits are computed (Eq. 2) upon completion of the forward model simulation121

by cost generic.F that relies on ecco toolbox.F for elementary operations and on cost genread.F122

for re-reading mi from file. Plain model-data misfits (mi − oi) can be penalized directly (i.e.123

used in Eq. 1 in place of di). More generally though misfits to be penalized (di in Eq. 1) derive124

from mi − oi through a generic post-processor (P in Eq. 2). They can thus be smoothed in125

space at run time via ‘gencost posproc’ for example (see this data.ecco). The overall sequence126

of operations for one cost function term is charted in Fig.9.127

2Mention summary in stdout and cost function printouts

12

http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/input/data.ecco
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/input.ecco_v4/data.ecco
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/ecco_phys.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/cost_averagesgeneric.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/input/data.ecco
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/cost_genread.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/input/data.ecco
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/cost_generic.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/ecco_toolbox.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/cost_genread.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/input/data.ecco

Algorithm 1 Generic cost function algorithm.

1: function cost generic(...) ⊲ Argument list defines the cost function
2: call ecco zero ⊲ Initialize local array to 0
3: call ecco cprsrl ⊲ Copy mask to local array
4: for irec = 1, nrecloop do ⊲ Loop over time steps, days or months
5: call cost gencal ⊲ Get file names, pointers
6: Begin cost genread ⊲ Read, process model field
7: if no preproc then
8: call ecco readbar ⊲ Read one record
9: else if preproc=clim then

10: call ecco readbar within loop ⊲ Average records
11: end if
12: End cost genread
13: call mdsreadfield ⊲ Read observational field
14: call ecco diffmsk ⊲ Compute masked model-data misfit
15: if posproc=smooth then
16: call smooth hetero2d ⊲ Smooth masked misfit
17: end if
18: call ecco addcost ⊲ Add to cost function
19: end for
20: end function

Figure 9: Chart of the generic cost function routine in pkg/ecco.

13

3.2 pkg/ctrl run-time parameters128

Note to self ... 3
129

The control problem is non-dimensional, as reflected by the omission of weights in control130

penalties (uTj uj, Eq.1). Non-dimensional controls are scaled to physical units through multipli-131

cation by their respective uncertainty fields, as part of the generic pre-processor Q (Eq.4) that132

can also include the spatial correlation model and/or a mapping in time such as the cyclic rep-133

etition of mean seasonal controls for example. Pre-conditioner R (Eq.5) does not appear in the134

estimation problem itself (Eq.1), as it only serves to push an optimization process preferentially135

towards certain directions of the control space.136

Key pkg/ctrl generic routines :137

• ctrl map ini gen.F computes dimensional control vector adjustments (Eq.4).138

• ctrl map ini gentim2d.F computes dimensional control vector adjustments (Eq.4).139

• ctrl map gentim2d.F maps time varying controls to active model variables.140

• ctrl map ini genarr.F maps time invariant controls to active model variables.141

• ctrl cost gen.F computes cost function penalties for all generic controls (in Eq.1).142

3.3 MITgcm compiling options143

Note to self ... 4
144

Much of the legacy code that has been distributed as part of ‘pkg/ecco’ and ‘pkg/ctrl’ in145

the past is now deprecated – it is superseeded by the generic cost functions and controls codes146

presented above. Most of the deprecated codes had not been tested or maintained for many147

years, and consist of variations of the same operations duplicated many times. Another issue148

was the lack of organization amongst the deprecated codes (unlike in Fig.8). The consensus was149

that there was no point in keeping them around much longer.150

For the time being the deprecated codes still exist but they are not compiled anymore unless151

the ‘ECCO CTRL DEPRECATED’ compile option is added in e.g. ‘ECCO CPPOPTIONS.h’152

(see below for details). To further facilitate the transition from old to new setup, the ctrlUseGen153

run-time parameter was added that switches between the old and new (generic) treatment of154

control vectors (assuming that ‘ECCO CTRL DEPRECATED’ was defined at compile time).155

As a side note: there is one non-generic feature that ISN’T deprecated since it has not been156

re-implemented in generic fashion, which is the control of open boundary conditions.157

The deprecation of the legacy codes leads to a vast reduction in the volume of estimation158

codes (30% of the code treated by automatic differentiation, which includes the entire phys-159

ical model, was removed in the process), a vast addition of capabilities (new or pre-existing160

functionalities are now available for any gridded data set), and a greatly improved flexibility161

(virtually all options can now be switched on/off at run time). Furthermore, the ecco, ctrl162

and autodiff packages were made independent of each other, and to follow general principles of163

MITgcm packages. Thus they can now be switched on/off at run time, independently (by virtue164

of useECCO, useCTRL, useAUTODIFF).165

3Mention this data.ctrl ... that data.ctrl ... this CTRL OPTIONS.h ... eccodevel email
4Mention optim and packing

14

http://mitgcm.org/viewvc/MITgcm/MITgcm/pkg/ctrl/ctrl_map_ini_gen.F?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm/pkg/ctrl/ctrl_map_ini_gentim2d.F?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm/pkg/ctrl/ctrl_map_gentim2d.F?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm/pkg/ctrl/ctrl_map_ini_genarr.F?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm/pkg/ctrl/ctrl_cost_gen.F?view=markup
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/input_ad/data.ctrl
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/input_itXX/data.ctrl
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/code/CTRL_OPTIONS.h

Compiling options are typically found in the ‘code/’ directory of any given setup of MIT-166

gcm (when customized) or in the corresponding MITgcm package (when using defaults). The167

most obvious difference between the new setup and an old setup is that CPP OPTIONS.h now168

disregards ECCO CPPOPTIONS.h and uses the following instead :169

• AUTODIFF OPTIONS.h contains the few compile directives of pkg/autodiff. The maxi-170

mum numbers of time steps are set in tamc.h171

• ECCO OPTIONS.h contains compile directives of pkg/ecco. Very few remain necessary,172

since all generic cost function settings can now be chosen at run time. The maximum173

numbers of cost terms are set in ecco.h174

• CTRL OPTIONS.h contains compile directives of pkg/ctrl. Very few remain necessary,175

since all generic control settings can now be chosen at run time. The maximum numbers176

of controls are set in CTRL SIZE.h177

• along with MOM COMMON OPTIONS.h, GMREDI OPTIONS.h, GGL90 OPTIONS.h,178

PROFILES OPTIONS.h, EXF OPTIONS.h, SEAICE OPTIONS.h, DIAG OPTIONS.h179

15

http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/code/
http://mitgcm.org/viewvc/MITgcm/MITgcm/verification/lab_sea/code_ad/
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/code/CPP_OPTIONS.h
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/code/ECCO_CPPOPTIONS.h
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/code/AUTODIFF_OPTIONS.h
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/code/ECCO_OPTIONS.h
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/code/CTRL_OPTIONS.h

	downloads
	MITgcm
	ECCO version 4 setup
	solution
	analysis tools

	MITgcm runs
	regression tests
	full ECCO v4 runs

	re-implemented ecco and ctrl packages
	pkg/ecco run-time parameters
	pkg/ctrl run-time parameters
	MITgcm compiling options

