
ECCO v4 development notes

Gaël Forget

Department of Earth, Atmospheric and Planetary Sciences

Massachusetts Institute of Technology

June 19, 2015

abstract

These notes pertain to the ECCO v4 state estimate, model setup, and associated codes (Forget et al.,
2015). Section 1 points to the other elements of documentation that are available online, and
associated download procedures. Section 2 provides guidance to ECCO v4 users interested in
operating the ECCO v4 model set-up and/or reproducing the ECCO v4 solution. Section 3
documents the re-implemented estimation modules of MITgcm. Some of the included material
in section 3 is expected to eventually move to the MITgcm manual. Throughout this document
I try to rely on pre-existing documents rather than duplicating them. Links to pre-existing
documents are indicated by blue colored font (e.g. ‘manual’ in the previous sentence).

Contents

1 downloads 3
1.1 MITgcm . 3
1.2 ECCO v4 setup . 4
1.3 ECCO v4 solution . 4
1.4 Diagnostic Tools . 5

2 MITgcm runs 7
2.1 regression tests . 7
2.2 Iterative optimization test case . 10
2.3 full ECCO v4 runs . 10

3 the generic pkg/ecco and pkg/ctrl 14
3.1 usage: pkg/ecco . 15
3.2 usage: pkg/ctrl . 17
3.3 implementation: pkg/ecco and pkg/ctrl . 19
3.4 Legacy: pkg/ecco and pkg/ctrl . 21

1

http://mitgcm.org/public/r2_manual/latest/online_documents/manual.pdf

References

Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: Ecco
version 4: an integrated framework for non-linear inverse modeling and global ocean state
estimation. Geoscientific Model Development Discussions, 8 (5), 3653–3743, doi:10.5194/
gmdd-8-3653-2015, URL http://www.geosci-model-dev-discuss.net/8/3653/2015/.

2

http://www.geosci-model-dev-discuss.net/8/3653/2015/

1 downloads1

This section documents locations and directions to download the MITgcm (section 1.1), the2

ECCO v4 model setup (section 1.2), the ECCO v4 state estimate output (section 1.3), and3

related diagnostic matlab tools (section 1.4).4

1.1 MITgcm5

To install the MITgcm:6

• Go to the MITgcm web-page @ mitgcm.org7

• Install MITgcm using cvs as explained @ cvs8

• Run MITgcm using testreport as explained @ manual, howto9

Pre-requisites are cvs, gcc, gfortran (or alternatives), and mpi (only for parallel runs). For10

example, my laptop setup, including mpi and netcdf, involved the following mac ports:11

• cvs @1.11.23 1 (active)12

• wget @1.14 5+ssl (active)13

• gcc48 @4.8.2 0 (active)14

• mpich-default @3.0.4 9+gcc48 (active)15

• mpich-gcc48 @3.0.4 9+fortran (active)16

• netcdf @4.3.0 2+dap+netcdf4 (active)17

• netcdf-fortran @4.2 10+gcc48 (active)18

Overridding the default mac gcc and mpich with the above requires:19

• sudo port select –set gcc mp-gcc4820

• sudo port select –set mpich mpich-gcc48-fortran21

Using mpi and netcdf within MITgcm requires two environment variables:22

• export MPI INC DIR=/opt/local/include23

• export NETCDF ROOT=/opt/local24

3

http://mitgcm.org/
http://mitgcm.org/public/using_cvs.html
http://mitgcm.org/public/r2_manual/latest/online_documents/manual.pdf
http://mitgcm.org/public/devel_HOWTO/devel_HOWTO.pdf

1.2 ECCO v4 setup25

Any MITgcm user can easily install the ECCO v4 setups using the setup these exps.csh shell26

script as explained @ README. It downloads global oce cs32/ (small setup), global oce llc90/27

(bigger setup) and model inputs from global oce input fields.tar.gz to a subdirectory called28

global oce tmp download/. The user then wants to move its contents to MITgcm/verification/29

(as shown in Fig.1) in order to allow for automated execution of the short benchmark runs30

via testreport using genmake2 (see section 2.1). Pre-requisites: having downloaded MITgcm31

(section 1.1) and mpi libraries (only if user wants to run the bigger global oce llc90/).32

The short benchmarks are ran on a daily basis to ensure continued compatibility with the33

up to date MITgcm. While the short benchmarks only go for a few time steps, global oce llc90/34

also is the basic setup that produces the 1992-2011 ECCO v4 ocean state estimate (Forget et al.,35

2015) when configured accordingly (as explained in section 2.3). Thus running the short bench-36

marks (section 2.1) is a useful step towards re-producing the state estimate (section 2.3). It37

should also be noted that an adjoint version of the short benchmarks also exist that can readily38

be run by users who access to the TAF compiler.39

Figure 1: MITgcm directory structure downloaded using cvs. The ECCO v4 directories indicated with
”+” were downloaded separately using setup these exps.csh script and moved to MITgcm/verification/.

MITgcm/

model/ (core of MITgcm)

pkg/ (MITgcm modules)

verification/

testreport (shell script)

aim.5l cs (mitgcm regression test)

+ global oce cs32/ (for laptops)

+ global oce llc90/ (for computers)

+ global oce input fields/ (inputs)

hs94.128x64x5 (mitgcm regression test)

...

tools/

genmake2 (shell script)

build options (wrt compilers)

...

1.3 ECCO v4 solution40

The state estimate output for ECCO v4-release 1 is available via this server which is linked to41

ecco-group.org. The various subdirectories contain monthly fields, this documentation of the solution,42

in situ and model profiles, the grid specifications and ancillary data as explained in README.docx.43

For example a file (or a subdirectory) can be downloaded at the command line e.g. per44

wget --recursive ftp://mit.ecco-group.org/ecco_for_las/version_4/release1/README.docx45

4

http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/setup_these_exps.csh?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/README?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/
http://mitgcm.org/~gforget/
http://mitgcm.org/viewvc/MITgcm/MITgcm/verification/testreport?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm/tools/genmake2?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/
http://www.fastopt.de/
http://mitgcm.org/public/using_cvs.html
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/setup_these_exps.csh?view=markup
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/contents.html
http://ecco-group.org/
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/nctiles
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/ancillary_data/standardAnalysis.pdf
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/MITprof
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/ancillary_data/GRID_r1.tar
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/README.docx

1.4 Diagnostic Tools46

To help ECCO v4 and MITgcm users analyze model output obtained either per section 1.3 or47

per section 2.3, two sets of Matlab tools are made freely available:48

• download gcmfaces and MITprof using shell script (or see getting started.m)49

• download MITgcm/utils using cvs (basic functionalities only).50

Any user can for example regenerate this documentation of the solution (the gcmfaces ‘standard51

analysis’) from the section 1.3 or section 2.3 output (expectedly organized according to Fig.2)52

simply by executing diags driver.m 1 and diags driver tex.m 2 in the following sequence :53

dirModel='release1_20150603_c65l/';54

dirMat='release1_20150603_c65l/mat/';55

dirTex='release1_20150603_c65l/tex/';56

nameTex='standardAnalysis';57

%58

diags_driver(dirModel,dirMat,1992:2011);%requires gcmfaces and MITprof in path59

diags_driver_tex(dirMat,{},dirTex,nameTex);%further requires m_map in path60

1This involves MITprof that also gets installed by this shell script.
2User needs to install m map for mapping and plotting.

5

http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/matlab_class/gcmfaces.pdf
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/profilesMatlabProcessing/README?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/setup_gcmfaces_and_mitprof.csh?view=markup
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/getting_started.m
http://mitgcm.org/viewvc/MITgcm/MITgcm/utils/
http://mitgcm.org/public/using_cvs.html
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/ancillary_data/standardAnalysis.pdf
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/matlab_class/gcmfaces.pdf
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/matlab_class/gcmfaces_diags/diags_driver.m ?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/matlab_class/gcmfaces_diags/diags_driver_tex.m?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/setup_gcmfaces_and_mitprof.csh?view=markup
http://www.eos.ubc.ca/~rich/map.html

Figure 2: Directory structure as expected by gcmfaces and MITprof toolboxes. The toolboxes themselves
can be relocated anywhere as long as their locations are included in the matlab path. Advanced analysis
using diags driver.m and diags driver tex.m will respectively generate the mat/ directory (for intermediate
computational results) and the tex/ directory (for standard analysis). This diagnostic process relies on
the depicted organization of GRID/ and solution/ for automation (user will otherwise be prompted to
enter directory names) and depends on downloaded copies of fields to nctiles/ (local subdirectory).

./

gcmfaces/ (matlab toolbox)

sample input/ (binary files)

@gcmfaces/ (matlab codes)

gcmfaces calc/ (matlab codes)

...

MITprof/ (matlab toolbox)

profiles samples/ (netcdf files)

profiles process main v2/ (matlab codes)

profiles stats/ (matlab codes)

...

GRID/ (binary output)

release 1 solution/

diags/ (binary output)

nctiles/ (netcdf output)

MITprof/ (netcdf output)

mat/ (created by gcmfaces)

tex/ (created by gcmfaces)

other solution/

diags/ (binary output)

...

...

6

http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/ancillary_data/standardAnalysis.pdf
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/nctiles

2 MITgcm runs61

The following procedures, commands and submission scripts allow runs of the ECCO v4 MITgcm62

setup – either in short regression tests (section 2.1) or for multi-decadal simulations such as the63

full 20 year state estimate (section 2.3). Pre-requisite for sections 2.1 and 2.3: having downloaded64

the MITgcm (section 1.1) and the ECCO v4 setups (section 1.2). Pre-requisite for section 2.3:65

having downloaded forcing fields and a few other binary model inputs (listed below).66

2.1 regression tests67

Short benchmarks of the MITgcm and ECCO v4 setup are run using testreport command line68

utility (see Fig.2; howto). Serial runs are executed simply at the command line e.g. per69

./testreport -t global_oce_cs3270

or71

./testreport -skipdir global_oce_llc9072

The reader is referred to ‘testreport –help’ and howto for additional explanation about such73

commands. If everything proceeds as expected then the result of the comparison with the74

reference result is reported to screen as shown in abbreviated form in Fig. 3. Depending on75

your machine environment the agreement with the reference result may be lower in which case76

‘testreport’ may indicate ’FAIL’ (e.g. see README). Despite the dramatic character of such77

message, this is generally ok and does not prevent reproducing full model solutions accurately78

(see section 2.3). If the testreport process gets interrupted then it is often safer to clean up79

experiment directories (e.g., by executing ./testreport -clean -t global oce *) and start over.80

default 10 ----T----- ----S-----

G D M c m s m s

e p a R g m m e . m m e .

n n k u 2 i a a d i a a d

2 d e n d n x n . n x n .

Y Y Y Y>14<16 16 16 16 16 16 16 16 pass global_oce_cs32

Figure 3: Abbreviated output of testreport to screen.

The above ‘testreport’ commands deserve a couple more specific comments. The first com-81

mand runs the global oce cs32/ benchmark solely. The second command will run all MITgcm82

benchmarks including global oce cs32/ but not the global oce llc90/ benchmark that requires83

at least 12 processors in forward (96 in adjoint) and therefore should not be run in serial mode84

(doing so may crash your laptop). It is thus excluded by using the ‘skipdir’ option. It should85

be stressed however that global oce cs32/ depends on the files in global oce llc90/ (which is the86

main setup) rather than duplicating them. Therefore global oce llc90/ must not be removed87

from MITgcm/verification for global oce cs32/ to work.88

Running the short benchmarks with mpi (assuming it has been installed) is equally simple:89

7

http://mitgcm.org/public/devel_HOWTO/devel_HOWTO.pdf
http://mitgcm.org/public/devel_HOWTO/devel_HOWTO.pdf
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/README
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/

./testreport -of ../tools/build_options/linux_amd64_ifort+mpi_ice_nas \90

-j 4 -MPI 96 -command 'mpiexec -np TR_NPROC ./mitgcmuv' \91

-t global_oce_llc9092

for example will run the first forward benchmark of global oce llc90/ on 96 processors using an93

ifort compiler. Note that the specifics (number of processors and compiler choice) are to be94

determined by the user and are machine dependent.95

Often in massively parallel computing environments, it is common that mpi jobs can only96

be run within a queuing system. The submission script in Fig.4 (that is also machine specific)97

provides an example on how to do it. It contains 3 hard-coded switches : fwdORad = 1 (2 for98

adjoint); numExp = 1 (2 for llc90); excludeMpi = 0 (1 for serial). This script should be located99

and submitted from MITgcm/verification. It is also common that compute nodes cannot access100

certain compilers, in which case the user may want to proceed in two steps:101

1. compile outside of the queuing system using e.g. per102

./testreport -of ../tools/build_options/linux_amd64_ifort+mpi_ice_nas \103

-j 4 -MPI 96 -command 'mpiexec -np TR_NPROC ./mitgcmuv' \104

-t global_oce_llc90 -norun105

2. submit the Fig.4 script, after adding -q to the ’opt’ variable to skip compilation.106

Running adjoint benchmarks requires access to the TAF compiler. The calls to testreport107

(see above) then only need to be slightly altered by appending the ’-ad’ option (for either108

serial or mpi jobs) and replacing ‘mitgcmuv’ with ‘mitgcmuv ad’ (only for mpi jobs). It should109

also be noted that, unlike other MITgcm benchmarks, global oce cs32/ and global oce llc90/110

do not include any adjoint specific ’code ad/’ directory as they simply use the forward model111

’code/’ directory instead. Since testreport relies on the existence of ’code ad/’ for its adjoint112

option though, it is necessary to soft link ’code/’ to ’code ad/’ in both global oce cs32/ and113

global oce llc90/ accordingly in order to to run their ’testreport -ad’ versions.114

8

http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/
http://www.fastopt.de/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/

Figure 4: Example script to run mpi testreport via a queueing system (machine dependent).

#PBS -S /bin/csh

#PBS -l select=1:ncpus=16:model=ivy+4:ncpus=20:model=ivy

#PBS -l walltime=02:00:00

#PBS -q devel

#PBS -m n

#environment variables and libraries

#---

limit stacksize unlimited

module purge

module load modules comp-intel/2013.1.117 mpi-sgi/mpt.2.10r6 netcdf/4.0

#

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${HOME}/lib

setenv MPI_IB_TIMEOUT 20

setenv MPI_IB_RAILS 2

setenv MPI_IB_FAILOVER 1

setenv MPI_CONNECTIONS_THRESHOLD 2049

#local variables and commands

#--

set fwdORad = 1

set numExp = 1

set excludeMpi = 0

#

if (${numExp} == 1) then

set nameExp = global_oce_cs32

set NBproc = 6

else

set nameExp = global_oce_llc90

set NBproc = 96

endif

#

if (${excludeMpi} == 1) then

set opt = '-of ../tools/build_options/linux_amd64_ifort -j 4'

else

set opt = '-of ../tools/build_options/linux_amd64_ifort+mpi_ice_nas -j 4'

endif

#

if (${fwdORad} == 1 && ${excludeMpi} == 0) then

./testreport ${opt} -MPI \

${NBproc} -command 'mpiexec -np TR_NPROC ./mitgcmuv' -t ${nameExp}

else if (${fwdORad} == 2 && ${excludeMpi} == 0) then

./testreport ${opt} -MPI \

${NBproc} -command 'mpiexec -np TR_NPROC ./mitgcmuv_ad' -ad -t ${nameExp}

else if (${fwdORad} == 1 && ${excludeMpi} == 1) then

./testreport ${opt} -t ${nameExp}

else if (${fwdORad} == 2 && ${excludeMpi} == 1) then

./testreport ${opt} -ad -t ${nameExp}

endif

exit 9

2.2 Iterative optimization test case115

The global oce cs32/input OI implements an iterative optimization test case. It case boils down116

to optimal interpolation (the model dynamics are not involved) solved by a variational method117

using the MITgcm adjoint (a diffusion equation in this test case). The pre-requisites are:118

1. run the adjoint benchmark in global oce cs32/ via testreport (see section 2.1).119

2. Go to MITgcm/lsopt and compile (see section 3.18 of manual).120

3. Go to MITgcm/optim, replace ‘natl box adjoint’ with ’global oce cs32’ in this Makefile,121

and compile as explained in section 3.18 of manual. An executable named ‘optim.x’ should122

get created in MITgcm/optim. If otherwise, please contact ecco-support@mit.edu123

4. go to MITgcm/verification/global oce cs32/input OI and type ‘source ./prepare run’124

Then the iterative optimization itself proceeds as follows125

1. ./mitgcmuv ad > output.txt126

2. ./optim.x > op.txt127

3. increment optimcycle by 1 in data.optim128

4. go back to step #1, to run the next iteration129

5. type ‘grep fc costfunction000*’ to display results (Fig. 5).130

costfunction0000: fc = 4118.1987222194211 0.00000000

costfunction0001: fc = 1523.9310891186672 0.00000000

costfunction0002: fc = 1053.3611790049420 0.00000000

costfunction0003: fc = 790.10479375339185 0.00000000

Figure 5: Results of iterative optimization after 3 iterations carried out as explained in section 2.2.

2.3 full ECCO v4 runs131

The 1992-2011 ECCO v4 ocean state estimate (Forget et al., 2015) is reproduced on a monhtly132

basis to ensure continued compatibility with the up to date MITgcm. Re-running the baseline133

20 year solution (or any other 20 year of global oce llc90/) on 96 processors may take about134

8 to 12 hours (depending on the computing environment). Reproducing the state estimate135

requires additional input to be downloaded (besides section 1.2; see below). Unlike for the short136

benchmarks of section 2.1, in the case of these longer model runs:137

• the model is compiled and run outside of testreport.138

• the model is compiled with compiler optimization.139

10

http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/input_OI
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/public/r2_manual/latest/online_documents/manual.pdf
http://mitgcm.org/viewvc/MITgcm/optim/Makefile
http://mitgcm.org/public/r2_manual/latest/online_documents/manual.pdf
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/

• additional forcing and binary input is necessary.140

• additional memory and/or disk space is necessary.141

The reader is referred to howto for a general explanation of such practice. The typical compi-142

lation sequence for the ECCO v4 forward model (i.e. the model setup in global oce llc90/) is143

shown in Fig.6. The tamc.h itXX and profiles.h itXX headers (see Fig.6) allow for additional144

time steps and in situ profiles input, respectively. Once done with compilation, the user typically145

creates and enters a run directory, links the model executable and inputs into place (see Fig.7),146

and submits a job to the queueing system (see Fig.8). The ‘input itXX/prepare run’ script147

(Fig.7) makes a local copy of the model executable (‘mitgcmuv’), of all namelists (‘data*’ from148

the various ‘input*/’ directories downloaded in section 1.2) that set up the model at run time,149

and links a few binary inputs such as the grid and bathymetry files. Assuming that the forcing,150

observations, model parameter adjustments and initial condition directories were populated and151

the script was edited (user need to specify forcingDir, obsDir, ctrlDir and pickDir in Fig.7)152

accordingly then it will furthermore link their contents in the run directory. Users interested in153

obtaining the necessary input files are advised to contact ecco-support@mit.edu regarding:154

• 6 hourly forcing files over 1992-2011 (EIG*199? EIG*20??).155

• insitu data sets (*feb2013*.nc) used in long benchmark (see below).156

• model parameter adjustsments, a.k.a. the control vector (xx *).157

• the initial conditions (pickup*)158

Once the model run has completed, one wants to verify that it accurately reproduces the159

reference result – or detect that a mistake was made. To this end, a mechanism that is analogous160

to testreport but is geared towards benchmarking long runs was introduced by Forget et al.161

(2015). It is operated by testreport ecco.m within Matlab. The pre-requisite is to add the162

reference result directory ’MITgcm/verification/global oce llc90/results itXX/’ to the Matlab163

path. As explained in Forget et al. (2015) testreport ecco.m compares time series of global164

mean variables, and other characteristics of the solution, to the reference state estimate values.165

The array of tests can be extended to e.g. meridional transports by adding gcmfaces to the166

Matlab path. The typical call sequence is indicated in the help of testreport ecco.m and in167

Fig.9 that also illustrates the typical display of the benchmarking results report to the user168

screen. The expected level of accuracy for re-runs of the baseline 20 year solution (with an up169

to date MITgcm code on any given computer) is reached when the displayed values are < −4170

(see Forget et al., 2015, for details). In cases when some of the tests were omitted (e.g. because171

gcmfaces was not in the Matlab path) the display will show NaN for omitted tests. From the172

generated model output, one may further easily compute and display many diagnostic quantities173

using the gcmfaces standard analysis for example (see section 1.4).174

11

http://mitgcm.org/public/devel_HOWTO/devel_HOWTO.pdf
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/results_itXX/testreport_ecco.m?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/results_itXX/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/results_itXX/testreport_ecco.m?view=markup
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/matlab_class/gcmfaces.pdf
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/results_itXX/testreport_ecco.m?view=markup
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/matlab_class/gcmfaces.pdf
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/matlab_class/gcmfaces.pdf
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/ancillary_data/standardAnalysis.pdf

Figure 6: Compilation directives, outside testreport, for intensive model runs. On a different machine
(computer) another build option file such as linux amd64 gfortran or linux amd64 ifort11 should be used.
To compile the adjoint, users need a TAF license and to replace ‘make -j 4’ with ‘make adall -j 4’. Note :
the ‘-mods=../code’ specification can be omitted if the build directory contains the ‘genmake local’ file).

cd verification/global_oce_llc90/build

../../../tools/genmake2 -optfile=\\

../../../tools/build_options/linux_amd64_ifort+mpi_ice_nas -mpi -mods=../code

make depend

\rm tamc.h profiles.h

cp ../code/tamc.h_itXX tamc.h

cp ../code/profiles.h_itXX profiles.h

make -j 4

Figure 7: Example script to setup the 20 year ECCO v4 state estimate. It is implied that user has filled
directories /bla, /blaa, /blaaa and /blaaa with appropriate forcing, observational, control vector, and
pickup files.

#!/bin/csh -f

set forcingDir = ~/bla

set obsDir = ~/blaa

set ctrlDir = ~/blaaa

set pickDir = ~/blaaaa

source ../input_itXX/prepare_run

cp ../build/mitgcmuv .

\rm pick*ta EIG*

ln -s ${forcingDir}/EIG* .

ln -s ${obsDir}/* .

ln -s ${ctrlDir}/xx* .

ln -s ${pickDir}/pick* .

exit

12

http://www.fastopt.de/

Figure 8: Example script to run the 20 year ECCO v4 state estimate on 96 processors (machine depen-
dent).

PBS -S /bin/csh

#PBS -l select=1:ncpus=16:model=ivy+4:ncpus=20:model=ivy

#PBS -l walltime=12:00:00

#PBS -q long

#environment variables and libraries

#--

limit stacksize unlimited

module purge

module load modules comp-intel/2013.1.117 mpi-sgi/mpt.2.10r6 netcdf/4.0

#

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${HOME}/lib

setenv MPI_IB_TIMEOUT 20

setenv MPI_IB_RAILS 2

setenv MPI_IB_FAILOVER 1

setenv MPI_CONNECTIONS_THRESHOLD 2049

#run MITgcm

#----------------

mpiexec -np 96 dplace -s1 ./mitgcmuv

exit

Figure 9: Calling sequence to be executed form within matlab to verify that their re-run of the 20 year
ECO v4 state estimate is acceptably close to the released state estimate.

addpath ../results_itXX;%necessary .m and .mat files

mytest0=testreport_ecco([],'release1'); mytest0.info.interactive=0;%initialization

mytest=testreport_ecco(mytest0,'release1',[-1:4],'./',1);%compute the tests

testreport_ecco(mytest,'release1');%display the results

%testreport_write(mytest,'myRun');%save the results to a mat file

The result as displayed to screen should look something like:

--

& jT & jS & jTs & ... & (reference is)

r4it11.c65l/ & (-6) & (-6) & (-6) & ... & release1

--

13

3 the generic pkg/ecco and pkg/ctrl175

State estimation consists in minimizing a least squares distance, J(u), that is defined as176

J(u) =
∑

i

αi × (dTi Ri
−1 di) +

∑

j

βj × (uTj uj) (1)

di = P(mi − oi) (2)

mi = SDM(v) (3)

v = Q(u) (4)

u = R(u′) (5)

where di denotes a set of model-data differences, αi the corresponding multiplier, Ri
−1 the177

corresponding weights, uj a set of non-dimensional controls (of adjustable model parameters),178

βj the corresponding multiplier, and additional symbols appearing in Eqs. 2-5 are defined below.179

The generic implementation of Eqs.1-5 and the adjoint interface within the MITgcm is180

charted in Fig. 10. A basic presentation of Eqs.1-5 and Fig. 10 can be found in Forget et al.181

(2015). Details of the implementation within the MITgcm ‘pkg/ecco’ and ‘pkg/ctrl’ (a concern182

for developers mainly) are provided later in sections 3.3 and 3.4. Most importantly, sections 3.1183

and 3.2 document the generic features in ‘pkg/ecco’ and ‘pkg/ctrl’ and their practical application.184

The presented features are tested daily via global oce cs32/ (section 2.1; adjoint experiment)185

and tested monthly in real-life conditions via the full ECCO v4 run (section 2.3; forward run),186

which will also serve for illustration in this section.187

MITgcm/pkg

autodiff ctrl ecco profiles smooth

interface with
TAF AD tool

checkpointing,
active files,
MPI

adjoint run
settings

uncertain
parameters

forward model
adjustments

cost function

uncertain
gridded data

time-averaged
model fields

cost function

uncertain ob-
served profiles

sub-sampled
model profiles

cost function

diffusion-
based
smoother

covariance
modeling

Figure 10: Chart of the organization and roles of MITgcm estimation modules. Additional details are
reported in the MITgcm manual, in Forget et al. (2015), and in section 3 of this document.

14

http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/public/r2_manual/latest/online_documents/manual.pdf

3.1 usage: pkg/ecco188

Model counterparts (mi) to observational data (oi) derive from adjustable model parameters (v189

; see section 3.2) through the model dynamics (M; see Forget et al. 2015), diagnostic compu-190

tations (D), and averaging (or subsampling in ‘pkg/profiles’) in space and time (S). For each191

cost function term the underlying uncertainty field (
√
Ri) is specified by ’gencost errfile’.3 The192

corresponding cost function multiplier (αi) is specified by ‘mult gencost’ (it is 1. by default).193

The file name for the observational fields (oi) is specified by ’gencost datafile’. Normally194

oi (and mi accordingly) is a time series of daily or monthly averages as specified by ‘gen-195

cost avgperiod’. In principle any periodicity should be possible but only ’month’, ’day’, ’step’196

and ‘const’ are implemented. The observational time series may be split in yearly files finishing in197

e.g. ’ 1992’, ’ 1993’, etc. Dense time series of model time steps can also be employed for testing198

purposes (e.g. in this data.ecco). Climatologies of mi can be formed from its time series to com-199

pare with observational oi climatologies. This option is activated by the gencost preproc=’clim’200

specification as illustrated in this data.ecco. Finally the gencost avgperiod=’const’ option is201

adequate when mi is constant through time once the model initialization phase is complete.4202

Plain model-data misfits (mi − oi) can be penalized directly (i.e. used in Eq. 1 in place of di).203

More generally though penalized misfits (di in Eq. 1) derive from mi − oi through a generic204

post-processor (P in Eq. 2). They can thus be smoothed in space at run time by setting205

gencost posproc=’smooth’ for example (see this data.ecco).206

The physical variable in mi is specified at run time via the first characters in ‘gencost barfile’207

(to match the observed variable specified as oi) as illustrated in this data.ecco and that data.ecco.208

The list of implemented variables as of the MITgcm checkpoint c65m is reported in Tab. 1. In209

cases when two different averages of the same variable may be needed in separate cost function210

terms (e.g. daily and monthly) or simply for convenience then an extension starting with ‘ ‘211

can be added to ‘gencost barfile’ (such as ’ day’ and ’ mon’). In cases when two cost function212

terms may use the same mi, the user may specify the same name (via ‘gencost barfile’) in both213

terms. In cases of three dimensional variables (see Tab. 1) the ‘gencost is3d’ run-time option is214

automatically set to .TRUE. (it is .FALSE. by default). The gencost outputlevel=1 option will215

output model-data misfit fields for offline analysis and visualization.216

3The option for time varying error fields remains to be implemented in gencost.
4This feature remains to be added to daily benchmark.

15

http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/input/data.ecco
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/input/data.ecco
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/input/data.ecco
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/input/data.ecco
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/input.ecco_v4/data.ecco

Table 1: List of implemented ‘gencost barfile’ options that can be specified at run-time in data.ecco
(as of the MITgcm checkpoint c65m). An extension starting with ‘ ‘ can be appended at the end of the
variable names for convenience.

variable name description remarks

m eta sea surface height free surface + corrections
m sst sea surface temperature first level temperature
m sss sea surface salinity first level salinity
m bp bottom pressure

m ustress zonal wind stress
m vstress meridional wind stress
m uwind zonal wind
m vwind meridional wind
m atemp atmospheric temperature
m aqh atmospheric humidity

m precip precipitation
m swdown downward shortwave
m lwdown downward longwave
m wspeed wind speed

m siarea sea-ice concentration
m siheff sea-ice effective thickness

m sihsnow snow effective thickness

m theta temperature three-dimensional
m salt salinity three-dimensional

m diffkr diapycnal diffusion three-dimensional, constant
m kapgm bolus velocity parameter three-dimensional, constant
m kapredi isopycnal diffusion three-dimensional, constant

m geothermalflux geothermal heating ‘const’
m bottomdrag bottom drag ‘const’

16

3.2 usage: pkg/ctrl217

Three basic options are implemented for Eqs. 4-5: time variable two dimensional controls (‘gen-218

tim2d’), time-invariant 2D controls (‘genarr2d’), and time-invariant 3D controls (‘genarr3d’).219

The ‘gentim2d’ run-time options are documented below as an example. Corresponding options220

exist in ‘genarr2d’ and ‘genarr3d’ except for the specifically time variable aspects (see below).221

The control problem is non-dimensional by default, as reflected by the omission of weights222

in control penalties (uTj uj , Eq.1). Non-dimensional controls (uj) are scaled to physical units (vj)223

through multiplication by their respective uncertainty fields (σuj), as part of the generic pre-224

processor Q (Eq.4). An adjustable parameter are activated and specified by the first character225

in ‘xx gentim2d file’ (as illustrated in this data.ctrl and that data.ctrl). The list of implemented226

variables as of the MITgcm checkpoint c65m is reported in Tab. 2.227

Table 2: List of implemented ‘xx gen????? file’ (with ????? indicated under remarks) options that can
be specified at run-time in data.ctrl (as of the MITgcm checkpoint c65m). An extension starting with ‘ ‘
can be appended at the end of the variable names for convenience.

variable name description remarks

’xx atemp’ atmospheric temperature ‘gentim2d’
’xx aqh’ atmospheric humidity ‘gentim2d’

’xx swdown’ downward shortwave ‘gentim2d’
’xx lwdown’ downward longwave ‘gentim2d’
’xx precip’ precipitation ‘gentim2d’
’xx uwind’ zonal wind ‘gentim2d’
’xx vwind’ meridional wind ‘gentim2d’

’xx tauu’ zonal wind stress ‘gentim2d’
’xx tauv’ meridional wind stress ‘gentim2d’

’xx etan’ initial free surface height ‘genarr2d’
’xx theta’ initial temperature ‘genarr3d’
’xx salt’ initial salinity ‘genarr3d’

’xx diffkr’ diapycnal diffusion ‘genarr3d’
’xx kapgm’ bolus velocity parameter ‘genarr3d’
’xx kapredi’ isopycnal diffusion ‘genarr3d’

’xx geothermal’ geothermal heating ‘genarr2d’
’xx bottomdrag’ bottom drag ‘genarr2d’

The corresponding uncertainty must be provided (in the form of weights 1/σ2

uj
; via a file228

name specified by ‘xx gentim2d weight’) to scale uj to physical units.5 Besides the scaling229

of uj to physical units, generic pre-processor Q can include for example spatial correlation230

modeling (using an implementation of Weaver and Courtier, 2001). This feature is activated231

for e.g. the first set of controls by setting xx gentim2d preproc(1)=’WC01’.6 As an alterna-232

tive, one may set xx gentim2d preproc(1)=’smooth’ to apply the smoothing part of Weaver233

5Options to specify an uncertainty field or constant instead remain to be implemented.
6The ctrlSmoothCorrel3D/2D switches and CPPs remain to be fully deprecated.

17

http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/input_ad/data.ctrl
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/input_itXX/data.ctrl

and Courtier, 2001 but omit the normalization part. Additional specification is possible in234

some cases (depending on ‘xx gentim2d preproc’) via sub-options ‘xx gentim2d preproc i’ (in-235

teger),‘... r’ (real), ‘... c’ (character string). For example, setting xx gentim2d preproc i(1,1)=2236

along with xx gentim2d preproc(1)=’WC01’ would apply the second correlation model defined237

in data.smooth to the first set of controls (the first correlation model would otherwise be used238

by default). The full list of implemented ‘xx gentim2d preproc’ options (as of the MITgcm239

checkpoint c65m) is reported in Tab. 3.240

Table 3: List of implemented ‘gentim2d’ options (top) and associated ‘xx gentim2d preproc’ options
(bottom) that can be specified at run-time in data.ctrl (as of the MITgcm checkpoint c65m).

parmater name type role

xx gentim2d file character activate an adjustable parameter

xx gentim2d weight character specify weight field(s)

xx gentim2d preproc character optional features listed below

xx gentim2d bounds real (five values) impose bounds (see that data.ctrl)

mult gentim2d real cost function multiplier (1. by default)

gentim2dPrecond real preconditioner (1. by default)

xx gentim2d preproc further specifications (see text) effect (in forward)

’WC01’ xx gentim2d preproc i activate correlation modeling

’smooth’ xx gentim2d preproc i activate plain smoothing

’docycle’ xx gentim2d preproc i average period replication

’rmcycle’ xx gentim2d preproc i periodic average subtraction

’variaweight’ (none) time variable weights

In the case of time-variable parameter adjustments, the frequency is specificied by ‘xx gentim2d period’.241

Time variable weights can also be provided by specifying ‘variaweight’ as e.g. ‘xx gentim2d preproc(2)’.242

In this case the ‘xx gentim2d weight’ file must contain as many records as the control param-243

eter time series itself (≈ the duration of the run divided by ’xx gentim2d period’). In the case244

when several adjustments are sought in one model parameter (e.g. time mean and time variable245

forcing adjustments treated separetely) then an extension starting with ‘ ‘ can be added to the246

‘xx gentim2d file’ specification (e.g. ’ mean’ and ’ anom’; see this data.ctrl).247

Further time-variable (‘gentim2d’ only) options are available via xx gentim2d preproc=248

’docycle’ and ’rmcycle’. They can be combined with ‘variaweight’ (that occurs after ‘docycle’249

and ‘rmcycle’) to create many ‘gentim2d’ varieties. The example in this data.ctrl specifies that250

adjustments to atmospheric temperatures are split in three terms: time mean (‘xx atempA’), sea-251

sonal cycle anomaly (‘xx atempB’; of zero time mean), and interannual anomaly (‘xx atempC’;252

of zero time mean and seasonal cycle). In a real-life situation, a seasonal cycle would consist253

of e.g. 12 monthly averages or 26 bi-weekly averages. In the short global oce cs32 benchmark254

a seasonal cycle is represented by a cycle of just two time steps. The three corresponding255

cycle durations would be specified as xx gentim2d preproc i=12, 26 and 2 respectively. The256

corresponding time mean would always be specified as xx gentim2d preproc i=1.257

With ‘gentim2d’, it can be imposed that adjustments stay bounded via ‘xx gentim2d bounds’.258

18

http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/input_itXX/data.ctrl
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/input_ad/data.ctrl
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/input_ad/data.ctrl
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/

Within ‘genarr2d’ and ‘genarr3d’, the corresponding option rather imposes bounds on adjusted259

parameters. Another run-time parameter in data.ctrl is ‘mult gentim2d’ (or the ‘genarr2d’,260

‘genarr3d’ version) that sets the multiplier for the corresponding cost function penalty (βj in261

Eq. 1; βj = 1. by default). Pre-conditioner R (Eq. 5) does not appear in the estimation prob-262

lem itself (Eq.1), as it only serves to push an optimization process preferentially towards certain263

directions of the control space. It is specified by ‘gentim2dPrecond’ (which is 1. by default).7264

3.3 implementation: pkg/ecco and pkg/ctrl265

The implementation of Eqs. 2 and 3 belongs in ‘pkg/ecco’ and ‘pkg/profiles’8 whereas Eqs. 4 and266

5 belong in ‘pkg/ctrl’. This section depicts the generic features implementations in ‘pkg/ecco’267

(first paragraphs) and ‘pkg/ctrl’ (later paragraphs). The maximum numbers of generic cost268

function terms (NGENCOST), 3D cost function terms (NGENCOST3D), and post-processing269

options (NGENPPROC) are set at compile time in ecco.h. The maximum numbers of generic270

time-variable 2D controls (maxCtrlTim2D), time-invariant 2D controls (maxCtrlArr2D), time-271

invariant 3D controls (maxCtrlArr3D) and pre- or post-processing options (maxCtrlProc) are set272

at compile time in CTRL SIZE.h. Other files involved in compiling ‘pkg/ecco’ and ‘pkg/profiles’273

are listed in section 3.4. Run-time options for ‘pkg/ecco’ and ‘pkg/profiles’ (that should be the274

main aspect of interest for most users) are readily documented in sections 3.1-3.2.275

The operations in D and S (see Eq.3) are mainly carried out as the forward model steps276

through time, respectively by ecco phys.F and cost averagesfields.F. During cost averagesfields.F,277

cost gencost customize.F maps physical variables to generic arrays (according to ‘gencost barfile’278

specified in data.ecco; see section 3.1) and cost averagesgeneric.F then proceeds with time-279

averaging, and periodically outputs the time-averaged mi to file. Climatologies of mi can be280

formed (as an optional feature) from its time series to compare with observational oi climatolo-281

gies (see section 3.1). This part of the mi processing is carried out within cost generic.F after282

the full time series has been written to file. Model-data misfits are then computed (Eq. 2) by283

cost generic.F that relies on ecco toolbox.F for elementary operations and on cost genread.F for284

re-reading mi from file. The calls to cost generic.F are operated in a loop by cost gencost all.F.285

The overall sequence of operations for one cost function term is charted in Fig.11. The286

distinction between ‘preproc’ and ‘posproc’ matches that between Eqs. 3 and 2. Most con-287

cretely the pre-processing ends and post-processing starts at the computation of mi − oi using288

‘ecco diffmsk’ in cost generic.F. Besides the numerous possibilities offered by this generic code,289

specific cost function terms that do not fit in the Fig.11 chart quite yet can be operated via290

cost gencost all.F and freely take advantage of the rest of the generic capabilities (storage ar-291

rays, adjoint checkpoint storage, run-time parameters, etc.). Examples of how to do this include292

cost gencost boxmean.F, cost gencost sshv4.F and cost gencost seaicev4.F.293

In the implementation of Eqs. 4 and 5, generality and versatility is greatly improved294

by operating virtually all of the pre-processing during model initialization. This is done by295

ctrl map ini genarr.F (’genarr2d’, ’genarr3d’) and ctrl map ini gentim2d.F (’gentim2d’). By296

the end of the processing steps, the effective version of the parameter adjustments (’gentim2d’,297

7The ‘genarr2d’ cases is treated accordingly, but the ‘genarr3dPrecond’ implementation seems incomplete.
8Additional documentation of ‘pkg/profiles’ is available in the MITgcm manual and in Forget et al. (2015).

19

http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/ecco.h
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ctrl/CTRL_SIZE.h
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/ecco_phys.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/cost_averagesfields.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/cost_averagesfields.F
http://mitgcm.org/viewvc/MITgcm/MITgcm/pkg/ecco/cost_gencost_customize.F?view=markup
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/cost_averagesgeneric.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/cost_generic.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/cost_generic.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/ecco_toolbox.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/cost_genread.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/cost_generic.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/cost_gencost_all.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/cost_generic.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/cost_gencost_all.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/cost_gencost_boxmean.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/cost_gencost_sshv4.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/cost_gencost_seaicev4.F
http://mitgcm.org/viewvc/MITgcm/MITgcm/pkg/ctrl/ctrl_map_ini_genarr.F?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm/pkg/ctrl/ctrl_map_ini_gentim2d.F?view=markup
http://mitgcm.org/public/r2_manual/latest/online_documents/manual.pdf

Algorithm 1 Generic cost function algorithm.

1: function cost generic(...) ⊲ Argument list defines the cost function
2: call ecco zero ⊲ Initialize local array to 0
3: call ecco cprsrl ⊲ Copy mask to local array
4: for irec = 1, nrecloop do ⊲ Loop over time steps, days or months
5: call cost gencal ⊲ Get file names, pointers
6: Begin cost genread ⊲ Read, process model field
7: if no preproc then
8: call ecco readbar ⊲ Read one record
9: else if preproc=clim then

10: call ecco readbar within loop ⊲ Average records
11: end if
12: End cost genread
13: call mdsreadfield ⊲ Read observational field
14: call ecco diffmsk ⊲ Compute masked model-data misfit
15: if posproc=smooth then
16: call smooth hetero2d ⊲ Smooth masked misfit
17: end if
18: call ecco addcost ⊲ Add to cost function
19: end for
20: end function

Figure 11: Chart of the generic cost function routine in pkg/ecco.

’genarr2d’) or of the adjusted model parameters (’genarr3d’) are written to disk (with ’.effec-298

tive’ in the file name). Adjusted time-invariant model parameters are generally set during model299

initialization, so their adjustments are also operated before the model time-stepping starts by300

ctrl map ini genarr.F (for ’genarr2d’, ’genarr3d’). Adjusted forcing variables are however reset301

at each time-step during the model run, so their adjustments are operated at the same times302

by e.g. exf getsurfacefluxes.F or exf getffields.F (for ’gentim2d’). The cost function term u
T
j uj303

is computed once the model run is complete along with the rest of Eq.1 (see section 3.1).304

It should be stressed that if a control parameter is activated at run-rime (see section 3.2)305

but its uncertainty is not specified (or vice versa) then ctrl readparms.F signals the inconsis-306

tency before stopping the model during its initialization (the user may otherwise overlook that307

his specification would have no effect). It should also be noted that the effective version of308

‘gentim2d’ adjustments always consists of a full time series of length ≈ the duration of the run309

divided by ’xx gentim2d period’. It may contain e.g. repeated seasonal mean adjustments or310

a sequence of interannual adjustments. This choice allows for a uniform, simple and general311

treatment of all varieties of ‘gentim2d’ adjustments needed during the model integration (that312

boils down to the temporal interpolation carried out in ctrl map gentim2d.F). This approach313

is particularly advantageous in the context of the checkpointed adjoint model development (see314

MITgcm manual). It only implies a marginal overhead in disk storage as compared with the315

adjoint checkpointing output itself or with e.g. six-hourly re-analysis forcing input files.316

20

http://mitgcm.org/viewvc/MITgcm/MITgcm/pkg/ctrl/ctrl_map_ini_genarr.F?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm/pkg/exf/exf_getsurfacefluxes.F?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm/pkg/exf/exf_getffields.F?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm/pkg/ctrl/ctrl_readparms.F?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm/pkg/ctrl/ctrl_map_gentim2d.F?view=markup
http://mitgcm.org/public/r2_manual/latest/online_documents/manual.pdf

3.4 Legacy: pkg/ecco and pkg/ctrl317

Much of the legacy code that has been distributed as part of ‘pkg/ecco’ and ‘pkg/ctrl’ in the past318

is now deprecated – it is superseeded by the generic cost function and control codes presented319

above. Most of the deprecated codes had not been tested or maintained for many years, and320

consist of variations of the same operations duplicated many times. Another issue was the lack321

of organization amongst the deprecated codes (unlike in Fig.10). The consensus was that there322

was no point in keeping them around much longer.323

For the time being the deprecated codes still exist but they are not compiled anymore unless324

the ‘ECCO CTRL DEPRECATED’ compile option is added in e.g. ‘ECCO CPPOPTIONS.h’325

(see below for details). To further facilitate the transition from old to new setup, the ctrlUseGen326

run-time parameter allows a switch between the old and new (generic) treatment of control327

vectors (assuming that ‘ECCO CTRL DEPRECATED’ was defined at compile time). As a side328

note: there is one non-generic feature that ISN’T deprecated since it has not been re-implemented329

in generic fashion, which is the control of open boundary conditions.330

The deprecation of the legacy codes leads to a vast reduction in the volume of estimation331

codes (30% of the code treated by automatic differentiation, which includes the entire phys-332

ical model, was removed in the process), a vast addition of capabilities (new or pre-existing333

functionalities are now available for any gridded data set), and a greatly improved flexibility334

(virtually all options can now be switched on/off at run time). Furthermore, the ecco, ctrl and335

autodiff packages were made independent of each other, and to follow common MITgcm coding336

practices. For example they can now be switched on/off at run time, independently (by virtue337

of useECCO, useCTRL, useAUTODIFF).338

Compiling options are typically found in the ‘code/’ directory of any given setup of MIT-339

gcm (when customized) or in the corresponding MITgcm package (when using defaults). The340

most obvious difference between the new setup and an old setup is that CPP OPTIONS.h now341

disregards ECCO CPPOPTIONS.h and uses the following instead :342

• AUTODIFF OPTIONS.h contains the few compile directives of pkg/autodiff. The maxi-343

mum numbers of time steps are set in tamc.h344

• ECCO OPTIONS.h contains compile directives of pkg/ecco. Very few remain necessary,345

since all generic cost function settings can now be chosen at run time. The maximum346

numbers of cost terms are set in ecco.h347

• CTRL OPTIONS.h contains compile directives of pkg/ctrl. Very few remain necessary,348

since all generic control settings can now be chosen at run time. The maximum numbers349

of controls are set in CTRL SIZE.h350

• along with MOM COMMON OPTIONS.h, GMREDI OPTIONS.h, GGL90 OPTIONS.h,351

PROFILES OPTIONS.h, EXF OPTIONS.h, SEAICE OPTIONS.h, DIAG OPTIONS.h352

21

http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/code/
http://mitgcm.org/viewvc/MITgcm/MITgcm/verification/lab_sea/code_ad/
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/code/CPP_OPTIONS.h
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/code/ECCO_CPPOPTIONS.h
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/code/AUTODIFF_OPTIONS.h
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/code/ECCO_OPTIONS.h
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/code/CTRL_OPTIONS.h

	downloads
	MITgcm
	ECCO v4 setup
	ECCO v4 solution
	Diagnostic Tools

	MITgcm runs
	regression tests
	Iterative optimization test case
	full ECCO v4 runs

	the generic pkg/ecco and pkg/ctrl
	usage: pkg/ecco
	usage: pkg/ctrl
	implementation: pkg/ecco and pkg/ctrl
	Legacy: pkg/ecco and pkg/ctrl

