
ECCO v4 development notes

Gaël Forget

Department of Earth, Atmospheric and Planetary Sciences

Massachusetts Institute of Technology

June 9, 2015

abstract

These notes pertain to the ECCO v4 state estimate, model setup, and associated codes (Forget et al.,
2015). Section 1 points to the other elements of documentation that are available online, and
associated download procedures. Section 2 provides guidance to ECCO v4 users interested in
operating the ECCO v4 model set-up and/or reproducing the ECCO v4 solution. Section 3
documents the re-implemented estimation modules of MITgcm. Some of the included material
in section 3 is expected to eventually move to the MITgcm manual.

Contents

1 downloads 3
1.1 MITgcm . 3
1.2 ECCO v4 setup . 4
1.3 ECCO v4 solution . 4
1.4 Diagnostic Tools . 5

2 MITgcm runs 6
2.1 regression tests . 6
2.2 full ECCO v4 runs . 9

3 re-implemented ecco and ctrl packages 12
3.1 pkg/ecco run-time parameters . 13
3.2 pkg/ctrl run-time parameters . 15
3.3 MITgcm compiling options . 15

1

http://mitgcm.org/public/r2_manual/latest/online_documents/manual.pdf

References

Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: Ecco
version 4: an integrated framework for non-linear inverse modeling and global ocean state
estimation. Geoscientific Model Development Discussions, 8 (5), 3653–3743, doi:10.5194/
gmdd-8-3653-2015, URL http://www.geosci-model-dev-discuss.net/8/3653/2015/.

2

http://www.geosci-model-dev-discuss.net/8/3653/2015/

1 downloads1

This section documents locations and directions to download the MITgcm (section 1.1), the2

ECCO v4 model setup (section 1.2), the ECCO v4 state estimate output (section 1.3), and3

related diagnostic matlab tools (section 1.4).4

1.1 MITgcm5

To install the MITgcm:6

• Go to the MITgcm web-page @ mitgcm.org7

• Install MITgcm using cvs as explained @ cvs8

• Run MITgcm using testreport as explained @ manual, howto9

Pre-requisites are cvs, gcc, gfortran (or alternatives), and mpi (only for parallel runs). For10

example, my laptop setup, including mpi and netcdf, involved the following mac ports:11

• cvs @1.11.23 1 (active)12

• wget @1.14 5+ssl (active)13

• gcc48 @4.8.2 0 (active)14

• mpich-default @3.0.4 9+gcc48 (active)15

• mpich-gcc48 @3.0.4 9+fortran (active)16

• netcdf @4.3.0 2+dap+netcdf4 (active)17

• netcdf-fortran @4.2 10+gcc48 (active)18

Overridding the default mac gcc and mpich with the above requires:19

• sudo port select –set gcc mp-gcc4820

• sudo port select –set mpich mpich-gcc48-fortran21

Using mpi and netcdf within MITgcm requires two environment variables:22

• export MPI INC DIR=/opt/local/include23

• export NETCDF ROOT=/opt/local24

3

http://mitgcm.org/
http://mitgcm.org/public/using_cvs.html
http://mitgcm.org/public/r2_manual/latest/online_documents/manual.pdf
http://mitgcm.org/public/devel_HOWTO/devel_HOWTO.pdf

1.2 ECCO v4 setup25

Any MITgcm user can easily install the ECCO v4 setups using the setup these exps.csh shell26

script as explained @ README. It downloads global oce cs32/ (small setup), global oce llc90/27

(bigger setup) and model inputs from global oce input fields.tar.gz to a subdirectory called28

global oce tmp download/. The user then wants to move its contents to MITgcm/verification/29

(as shown in Fig.1) in order to allow for automated execution of the short benchmark runs30

via testreport using genmake2 (see section 2.1). Pre-requisites: having downloaded MITgcm31

(section 1.1) and mpi libraries (only if user wants to run the bigger global oce llc90/).32

The short benchmarks are ran on a daily basis to ensure continued compatibility with the33

up to date MITgcm. While the short benchmarks only go for a few time steps, global oce llc90/34

also is the basic setup that produces the 1992-2011 ECCO v4 ocean state estimate (Forget et al.,35

2015) when configured accordingly (as explained in section 2.2). Thus running the short bench-36

marks (section 2.1) is a useful step towards re-producing the state estimate (section 2.2). It37

should also be noted that an adjoint version of the short benchmarks also exist that can readily38

be run by users who access to the TAF compiler.39

Figure 1: MITgcm directory structure downloaded using cvs. The ECCO v4 directories indicated with
”+” were downloaded separately using setup these exps.csh script and moved to MITgcm/verification/.

MITgcm/

model/ (core of MITgcm)

pkg/ (MITgcm modules)

verification/

testreport (shell script)

aim.5l cs (mitgcm regression test)

+ global oce cs32/ (for laptops)

+ global oce llc90/ (for computers)

+ global oce input fields/ (inputs)

hs94.128x64x5 (mitgcm regression test)

...

tools/

genmake2 (shell script)

build options (wrt compilers)

...

1.3 ECCO v4 solution40

The state estimate output for ECCO v4-release 1 is available via this server which is linked to41

ecco-group.org. The various subdirectories contain monthly fields, this documentation of the solution,42

in situ and model profiles, the grid specifications and ancillary data as explained in README.docx.43

For example a file (or a subdirectory) can be downloaded at the command line e.g. per44

wget --recursive ftp://mit.ecco-group.org/ecco_for_las/version_4/release1/README.docx45

4

http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/setup_these_exps.csh?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/README?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/
http://mitgcm.org/~gforget/
http://mitgcm.org/viewvc/MITgcm/MITgcm/verification/testreport?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm/tools/genmake2?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/
http://www.fastopt.de/
http://mitgcm.org/public/using_cvs.html
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/setup_these_exps.csh?view=markup
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/contents.html
http://ecco-group.org/
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/nctiles
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/ancillary_data/standardAnalysis.pdf
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/MITprof
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/ancillary_data/GRID_r1.tar
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/README.docx

1.4 Diagnostic Tools46

To help ECCO v4 and MITgcm users analyze model output obtained either per section 1.3 or47

per section 2.2, two sets of Matlab tools are made freely available:48

• download gcmfaces and MITprof using shell script (or see getting started.m)49

• download MITgcm/utils using cvs (basic functionalities only).50

Any user can for example regenerate this documentation of the solution (the gcmfaces ‘standard51

analysis’) from the section 1.3 or section 2.2 output (expectedly organized according to Fig.2)52

simply by executing diags driver.m and diags driver tex.m in the following sequence :53

diags_driver('release1/','release1/mat/',1992:2011);54

diags_driver_tex('release1/mat/',{},'release1/tex/standardAnalysis');55

Figure 2: Directory structure as expected by gcmfaces and MITprof toolboxes. The toolboxes themselves
can be relocated anywhere as long as their locations are included in the matlab path. Advanced analysis
using diags driver.m and diags driver tex.m will respectively generate the mat/ directory (for intermediate
computational results) and the tex/ directory (for standard analysis). This diagnostic process relies on
the depicted organization of GRID/ and solution/ for automation (user will otherwise be prompted to
enter directory names) and depends on downloaded copies of fields to nctiles/ (local subdirectory).

./

gcmfaces/ (matlab toolbox)

sample input/ (binary files)

@gcmfaces/ (matlab codes)

gcmfaces calc/ (matlab codes)

...

MITprof/ (matlab toolbox)

profiles samples/ (netcdf files)

profiles process main v2/ (matlab codes)

profiles stats/ (matlab codes)

...

GRID/ (binary output)

release 1 solution/

diags/ (binary output)

nctiles/ (netcdf output)

MITprof/ (netcdf output)

mat/ (created by gcmfaces)

tex/ (created by gcmfaces)

other solution/

diags/ (binary output)

...

...

5

http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/matlab_class/gcmfaces.pdf
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/profilesMatlabProcessing/README?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/setup_gcmfaces_and_mitprof.csh?view=markup
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/getting_started.m
http://mitgcm.org/viewvc/MITgcm/MITgcm/utils/
http://mitgcm.org/public/using_cvs.html
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/ancillary_data/standardAnalysis.pdf
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/matlab_class/gcmfaces.pdf
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/matlab_class/gcmfaces_diags/diags_driver.m ?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/matlab_class/gcmfaces_diags/diags_driver_tex.m ?view=markup
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/ancillary_data/standardAnalysis.pdf
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/nctiles

2 MITgcm runs56

The following procedures, commands and submission scripts allow runs of the ECCO v4 MITgcm57

setup – either in short regression tests (section 2.1) or for multi-decadal simulations such as the58

full 20 year state estimate (section 2.2). Pre-requisite for sections 2.1 and 2.2: having downloaded59

the MITgcm (section 1.1) and the ECCO v4 setups (section 1.2). Pre-requisite for section 2.2:60

having downloaded forcing fields and a few other binary model inputs (listed below).61

2.1 regression tests62

Short benchmarks of the MITgcm and ECCO v4 setup are run using testreport command line63

utility (see Fig.2; howto). Serial runs are executed simply at the command line e.g. per64

./testreport -t global_oce_cs3265

or66

./testreport -skipdir global_oce_llc9067

The reader is referred to ‘testreport –help’ and howto for additional explanation about such68

commands. If everything proceeds as expected then the result of the comparison with the69

reference result is reported to screen as shown in abbreviated form in Fig. 3. Depending on70

your machine environment the agreement with the reference result may be lower in which case71

‘testreport’ may indicate ’FAIL’ (e.g. see README). Despite the dramatic character of such72

message, this is generally ok and does not prevent reproducing full model solutions accurately73

(see section 2.2). If the testreport process gets interrupted then it is often safer to clean up74

experiment directories (e.g., by executing ./testreport -clean -t global oce *) and start over.75

default 10 ----T----- ----S-----

G D M c m s m s

e p a R g m m e . m m e .

n n k u 2 i a a d i a a d

2 d e n d n x n . n x n .

Y Y Y Y>14<16 16 16 16 16 16 16 16 pass global_oce_cs32

Figure 3: Abbreviated output of testreport to screen.

The above ‘testreport’ commands deserve a couple more specific comments. The first com-76

mand runs the global oce cs32/ benchmark solely. The second command will run all MITgcm77

benchmarks including global oce cs32/ but not the global oce llc90/ benchmark that requires78

at least 12 processors in forward (96 in adjoint) and therefore should not be run in serial mode79

(doing so may crash your laptop). It is thus excluded by using the ‘skipdir’ option. It should80

be stressed however that global oce cs32/ depends on the files in global oce llc90/ (which is the81

main setup) rather than duplicating them. Therefore global oce llc90/ must not be removed82

from MITgcm/verification for global oce cs32/ to work.83

Running the short benchmarks with mpi (assuming it has been installed) is equally simple:84

6

http://mitgcm.org/public/devel_HOWTO/devel_HOWTO.pdf
http://mitgcm.org/public/devel_HOWTO/devel_HOWTO.pdf
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/README
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/

./testreport -of ../tools/build_options/linux_amd64_ifort+mpi_ice_nas \85

-j 4 -MPI 96 -command 'mpiexec -np TR_NPROC ./mitgcmuv' \86

-t global_oce_llc9087

for example will run the forward global oce llc90/ benchmark on 96 processors using an ifort88

compiler. Note that the specifics (number of processors and compiler choice) are to be deter-89

mined by the user and are machine dependent.90

Often in massively parallel computing environments, it is common that mpi jobs can only91

be run within a queuing system. The submission script in Fig.4 (that is also machine specific)92

provides an example on how to do it. It contains 3 hard-coded switches : fwdORad = 1 (2 for93

adjoint); numExp = 1 (2 for llc90); excludeMpi = 0 (1 for serial). This script should be located94

and submitted from MITgcm/verification. It is also common that compute nodes cannot access95

certain compilers, in which case the user may want to proceed in two steps:96

1. compile outside of the queuing system using e.g. per97

./testreport -of ../tools/build_options/linux_amd64_ifort+mpi_ice_nas \98

-j 4 -MPI 96 -command 'mpiexec -np TR_NPROC ./mitgcmuv' \99

-t global_oce_llc90 -norun100

2. submit the Fig.4 script, after adding -q to the ’opt’ variable to skip compilation.101

Running adjoint benchmarks requires access to the TAF compiler. The calls to testreport102

(see above) then only need to be slightly altered by appending the ’-ad’ option (for either103

serial or mpi jobs) and replacing ‘mitgcmuv’ with ‘mitgcmuv ad’ (only for mpi jobs). It should104

also be noted that, unlike other MITgcm benchmarks, global oce cs32/ and global oce llc90/105

do not include any adjoint specific ’code ad/’ directory as they simply use the forward model106

’code/’ directory instead. Since testreport relies on the existence of ’code ad/’ for its adjoint107

option though, it is necessary to soft link ’code/’ to ’code ad/’ in both global oce cs32/ and108

global oce llc90/ accordingly in order to to run their ’testreport -ad’ versions.109

7

http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/
http://www.fastopt.de/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/

Figure 4: Example script to run mpi testreport via a queueing system (machine dependent).

#PBS -S /bin/csh

#PBS -l select=1:ncpus=16:model=ivy+4:ncpus=20:model=ivy

#PBS -l walltime=02:00:00

#PBS -q devel

#PBS -m n

#environment variables and libraries

#---

limit stacksize unlimited

module purge

module load modules comp-intel/2013.1.117 mpi-sgi/mpt.2.10r6 netcdf/4.0

#

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${HOME}/lib

setenv MPI_IB_TIMEOUT 20

setenv MPI_IB_RAILS 2

setenv MPI_IB_FAILOVER 1

setenv MPI_CONNECTIONS_THRESHOLD 2049

#local variables and commands

#--

set fwdORad = 1

set numExp = 1

set excludeMpi = 0

#

if (${numExp} == 1) then

set nameExp = global_oce_cs32

set NBproc = 6

else

set nameExp = global_oce_llc90

set NBproc = 96

endif

#

if (${excludeMpi} == 1) then

set opt = '-of ../tools/build_options/linux_amd64_ifort -j 4'

else

set opt = '-of ../tools/build_options/linux_amd64_ifort+mpi_ice_nas -j 4'

endif

#

if (${fwdORad} == 1 && ${excludeMpi} == 0) then

./testreport ${opt} -MPI \

${NBproc} -command 'mpiexec -np TR_NPROC ./mitgcmuv' -t ${nameExp}

else if (${fwdORad} == 2 && ${excludeMpi} == 0) then

./testreport ${opt} -MPI \

${NBproc} -command 'mpiexec -np TR_NPROC ./mitgcmuv_ad' -ad -t ${nameExp}

else if (${fwdORad} == 1 && ${excludeMpi} == 1) then

./testreport ${opt} -t ${nameExp}

else if (${fwdORad} == 2 && ${excludeMpi} == 1) then

./testreport ${opt} -ad -t ${nameExp}

endif

exit 8

2.2 full ECCO v4 runs110

The 1992-2011 ECCO v4 ocean state estimate (Forget et al., 2015) is reproduced on a monhtly111

basis to ensure continued compatibility with the up to date MITgcm. Unlike for the short112

benchmarks of section 2.1, in the case of this longer model run:113

• the model is compiled and run outside of testreport.114

• the model is compiled with compiler optimization.115

• additional forcing and binary input is necessary.116

• additional memory and/or disk space is necessary.117

The reader is referred to howto for a general explanation of such practice. The typical compi-118

lation sequence for the ECCO v4 forward model (i.e. the model setup in global oce llc90/) is119

shown in Fig.5. The tamc.h itXX and profiles.h itXX headers (see Fig.5) allow for additional120

time steps and in situ profiles input, respectively. Once done with compilation, the user typically121

creates and enters a run directory, links the model executable and inputs into place (see Fig.6),122

and submits a job to the queueing system (see Fig.7). To obtain the additional model input123

required to reproduce the baseline 1992-2011 solution (i.e. the ECCO v4 state estimate) please124

contact ecco-support@mit.edu. It consists of:125

• the forcing files (EIG*199? EIG*20??).126

• the initial conditions (pickup*) and control vector adjustsments (xx *).127

• the insitu data sets inputs (*feb2013*.nc) used for benchmarking purposes (see below).128

Re-running the baseline 20 year solution (or in fact running any other 20 year solution of129

global oce llc90/) on 96 processors may take about 8 to 12 hours (depending on the comput-130

ing environment). Once the model run has completed, one wants to verify that it accurately131

reproduces the reference result – or detect that a mistake was made. To this end, a mechanism132

that is analogous to testreport but is geared towards benchmarking long runs was introduced133

by Forget et al. (2015). It is operated by testreport ecco.m within Matlab. The pre-requisite134

is to add the reference result directory ’MITgcm/verification/global oce llc90/results itXX/’ to135

the Matlab path. As explained in Forget et al. (2015) testreport ecco.m compares time series of136

global mean variables, and other characteristics of the solution, to the reference state estimate137

values. The array of tests can be extended to e.g. meridional transports by adding gcmfaces138

to the Matlab path. The typical call sequence is indicated in the help of testreport ecco.m and139

in Fig.8 that also illustrate the typical display of the benchmarking results report to the user140

screen. The expected level of accuracy for re-runs of the baseline 20 year solution (with an up141

to date MITgcm code on any given computer) is reached when the displayed values are < −4142

(see Forget et al., 2015, for details). In cases when some of the tests were omitted (e.g. because143

gcmfaces was not in the Matlab path) the display will show NaN for omitted tests.144

9

http://mitgcm.org/public/devel_HOWTO/devel_HOWTO.pdf
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/results_itXX/testreport_ecco.m?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/results_itXX/
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/results_itXX/testreport_ecco.m?view=markup
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/matlab_class/gcmfaces.pdf
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/results_itXX/testreport_ecco.m?view=markup
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/matlab_class/gcmfaces.pdf

Figure 5: Compilation directives, outside testreport, for intensive model runs. On a different machine
(computer) another build option file such as linux amd64 gfortran or linux amd64 ifort11 should be used.
To compile the adjoint, users need a TAF license and to replace ‘make -j 4’ with ‘make adall -j 4’. Note :
the ‘-mods=../code’ specification can be omitted if the build directory contains the ‘genmake local’ file).

cd verification/global_oce_llc90/build

../../../tools/genmake2 -optfile=\\

../../../tools/build_options/linux_amd64_ifort+mpi_ice_nas -mpi -mods=../code

make depend

\rm tamc.h profiles.h

cp ../code/tamc.h_itXX tamc.h

cp ../code/profiles.h_itXX profiles.h

make -j 4

Figure 6: Example script to setup the 20 year ECCO v4 state estimate. It is implied that user has filled
directories /bla, /blaa, /blaaa and /blaaa with appropriate forcing, observational, control vector, and
pickup files.

#!/bin/csh -f

set forcingDir = ~/bla

set obsDir = ~/blaa

set ctrlDir = ~/blaaa

set pickDir = ~/blaaaa

source ../input_itXX/prepare_run

cp ../build/mitgcmuv .

\rm pick*ta EIG*

ln -s ${forcingDir}/EIG* .

ln -s ${obsDir}/* .

ln -s ${ctrlDir}/xx* .

ln -s ${pickDir}/pick* .

exit

10

http://www.fastopt.de/

Figure 7: Example script to run the 20 year ECCO v4 state estimate on 96 processors (machine depen-
dent).

PBS -S /bin/csh

#PBS -l select=1:ncpus=16:model=ivy+4:ncpus=20:model=ivy

#PBS -l walltime=12:00:00

#PBS -q long

#environment variables and libraries

#--

limit stacksize unlimited

module purge

module load modules comp-intel/2013.1.117 mpi-sgi/mpt.2.10r6 netcdf/4.0

#

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${HOME}/lib

setenv MPI_IB_TIMEOUT 20

setenv MPI_IB_RAILS 2

setenv MPI_IB_FAILOVER 1

setenv MPI_CONNECTIONS_THRESHOLD 2049

#run MITgcm

#----------------

mpiexec -np 96 dplace -s1 ./mitgcmuv

exit

Figure 8: Calling sequence to be executed form within matlab to verify that their re-run of the 20 year
ECO v4 state estimate is acceptably close to the released state estimate.

addpath ../results_itXX;%necessary .m and .mat files

mytest0=testreport_ecco([],'release1'); mytest0.info.interactive=0;%initialization

mytest=testreport_ecco(mytest0,'release1',[-1:4],'./',1);%compute the tests

testreport_ecco(mytest,'release1');%display the results

%testreport_write(mytest,'myRun');%save the results to a mat file

The result as displayed to screen should look something like:

--

& jT & jS & jTs & ... & (reference is)

r4it11.c65l/ & (-6) & (-6) & (-6) & ... & release1

--

11

3 re-implemented ecco and ctrl packages145

State estimation consists in minimizing a least squares distance, J(u), that is defined as146

J(u) =
∑

i

αi × (dTi Ri
−1 di) +

∑

j

βj × (uTj uj) (1)

di = P(mi − oi) (2)

mi = SDM(v) (3)

v = Q(u) (4)

u = R(u′) (5)

where di denotes a set of model-data differences, αi the corresponding multiplier, Ri
−1 the147

corresponding weights, uj a set of non-dimensional controls, βj the corresponding multiplier,148

and additional symbols appearing in Eqs. 2-5 are defined below. The implementation of Eqs.1-149

5 and the adjoint interface within the MITgcm is charted in Fig. 9. A general presentation150

of Eqs.1-5 and Fig. 9 can readily be found in Forget et al. (2015). The focus here is on the151

underlying recent code development in the ‘pkg/ecco’ and ‘pkg/ctrl’ packages of MITgcm. These152

features are now tested daily via global oce cs32/ (adjoint experiment) that will also serve here153

for illustration in this document.154

MITgcm/pkg

autodiff ctrl ecco profiles smooth

interface with
TAF AD tool

checkpointing,
active files,
MPI

adjoint run
settings

uncertain
parameters

forward model
adjustments

cost function

uncertain
gridded data

time-averaged
model fields

cost function

uncertain ob-
served profiles

sub-sampled
model profiles

cost function

diffusion-
based
smoother

covariance
modeling

Figure 9: Chart of the organization and roles of MITgcm estimation modules. Additional details are
reported in the MITgcm manual, Forget et al. (2015), and section 3.

12

http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/
http://mitgcm.org/public/r2_manual/latest/online_documents/manual.pdf

3.1 pkg/ecco run-time parameters155

Note to self ... 1
156

Model counterparts (mi) to observational data (oi) derive from control parameters (v)157

through the model dynamics (M), diagnostic computations (D), and averaging (or subsampling158

in ‘pkg/profiles’) in space and time (S). The physical variable in mi is specified at run time via159

the first characters in ‘gencost barfile’ (to match the observed variable in oi) as illustrated in160

this data.ecco and that data.ecco. The list of implemented variables as of the MITgcm check-161

point c65l consists of ‘eta’, ‘sst’, ‘sss’, ‘bp’, ‘tauZon’, ‘tauMer’, ‘theta’, ‘salt’ (list obtained by:162

grep gencost barfile pkg/ecco/cost gencost customize.F). In the case of three dimensional vari-163

ables (e.g. ‘theta’ or ‘salt’) the ‘gencost is3d’ run-time option must be set to .TRUE. (it .FALSE.164

by default). The file name for the observational fields (oi) and the model-data uncertainty field165

(
√
Ri) are specified at run time via ‘gencost datafile’ and ‘gencost errfile’ respectively. The cost166

function multiplier (αi) further needs to be specified by ‘mult gencost’ (it is 0. by default).167

Both D and S in Eq.3 are mainly carried out as the forward model steps through time,168

respectively by ecco phys.F and cost averagesgeneric.F, and mi is written to file periodically.169

mi and oi normally are time series of daily or monthly averages, as specified at run time via170

‘gencost avgperiod’. However dense time series of model time steps can also be employed for171

testing purposes as illustrated in this data.ecco. Furthermore climatologies of mi can be formed172

from its time series by cost genread.F to allow for comparison with observational oi climatologies.173

This part of the mi processing is carried out after the full time series has been written to file.174

It is activated via the ‘gencost preproc’ option as illustrated in this data.ecco.175

Model-data misfits are computed (Eq. 2) upon completion of the forward model simulation176

by cost generic.F that relies on ecco toolbox.F for elementary operations and on cost genread.F177

for re-reading mi from file. Plain model-data misfits (mi − oi) can be penalized directly (i.e.178

used in Eq. 1 in place of di). More generally though misfits to be penalized (di in Eq. 1) derive179

from mi − oi through a generic post-processor (P in Eq. 2). They can thus be smoothed in180

space at run time via ‘gencost posproc’ for example (see this data.ecco). The overall sequence181

of operations for one cost function term is charted in Fig.10.182

1Mention summary in stdout and cost function printouts

13

http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/input/data.ecco
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/input.ecco_v4/data.ecco
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/ecco_phys.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/cost_averagesgeneric.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/input/data.ecco
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/cost_genread.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/input/data.ecco
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/cost_generic.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/ecco_toolbox.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm/pkg/ecco/cost_genread.F
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/input/data.ecco

Algorithm 1 Generic cost function algorithm.

1: function cost generic(...) ⊲ Argument list defines the cost function
2: call ecco zero ⊲ Initialize local array to 0
3: call ecco cprsrl ⊲ Copy mask to local array
4: for irec = 1, nrecloop do ⊲ Loop over time steps, days or months
5: call cost gencal ⊲ Get file names, pointers
6: Begin cost genread ⊲ Read, process model field
7: if no preproc then
8: call ecco readbar ⊲ Read one record
9: else if preproc=clim then

10: call ecco readbar within loop ⊲ Average records
11: end if
12: End cost genread
13: call mdsreadfield ⊲ Read observational field
14: call ecco diffmsk ⊲ Compute masked model-data misfit
15: if posproc=smooth then
16: call smooth hetero2d ⊲ Smooth masked misfit
17: end if
18: call ecco addcost ⊲ Add to cost function
19: end for
20: end function

Figure 10: Chart of the generic cost function routine in pkg/ecco.

14

3.2 pkg/ctrl run-time parameters183

Note to self ... 2
184

The control problem is non-dimensional, as reflected by the omission of weights in control185

penalties (uTj uj, Eq.1). Non-dimensional controls are scaled to physical units through multipli-186

cation by their respective uncertainty fields, as part of the generic pre-processor Q (Eq.4) that187

can also include the spatial correlation model and/or a mapping in time such as the cyclic rep-188

etition of mean seasonal controls for example. Pre-conditioner R (Eq.5) does not appear in the189

estimation problem itself (Eq.1), as it only serves to push an optimization process preferentially190

towards certain directions of the control space.191

Key pkg/ctrl generic routines :192

• ctrl map ini gen.F computes dimensional control vector adjustments (Eq.4).193

• ctrl map ini gentim2d.F computes dimensional control vector adjustments (Eq.4).194

• ctrl map gentim2d.F maps time varying controls to active model variables.195

• ctrl map ini genarr.F maps time invariant controls to active model variables.196

• ctrl cost gen.F computes cost function penalties for all generic controls (in Eq.1).197

3.3 MITgcm compiling options198

Note to self ... 3
199

Much of the legacy code that has been distributed as part of ‘pkg/ecco’ and ‘pkg/ctrl’ in200

the past is now deprecated – it is superseeded by the generic cost functions and controls codes201

presented above. Most of the deprecated codes had not been tested or maintained for many202

years, and consist of variations of the same operations duplicated many times. Another issue203

was the lack of organization amongst the deprecated codes (unlike in Fig.9). The consensus was204

that there was no point in keeping them around much longer.205

For the time being the deprecated codes still exist but they are not compiled anymore unless206

the ‘ECCO CTRL DEPRECATED’ compile option is added in e.g. ‘ECCO CPPOPTIONS.h’207

(see below for details). To further facilitate the transition from old to new setup, the ctrlUseGen208

run-time parameter was added that switches between the old and new (generic) treatment of209

control vectors (assuming that ‘ECCO CTRL DEPRECATED’ was defined at compile time).210

As a side note: there is one non-generic feature that ISN’T deprecated since it has not been211

re-implemented in generic fashion, which is the control of open boundary conditions.212

The deprecation of the legacy codes leads to a vast reduction in the volume of estimation213

codes (30% of the code treated by automatic differentiation, which includes the entire phys-214

ical model, was removed in the process), a vast addition of capabilities (new or pre-existing215

functionalities are now available for any gridded data set), and a greatly improved flexibility216

(virtually all options can now be switched on/off at run time). Furthermore, the ecco, ctrl217

and autodiff packages were made independent of each other, and to follow general principles of218

MITgcm packages. Thus they can now be switched on/off at run time, independently (by virtue219

of useECCO, useCTRL, useAUTODIFF).220

2Mention this data.ctrl ... that data.ctrl ... this CTRL OPTIONS.h ... eccodevel email
3Mention optim and packing

15

http://mitgcm.org/viewvc/MITgcm/MITgcm/pkg/ctrl/ctrl_map_ini_gen.F?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm/pkg/ctrl/ctrl_map_ini_gentim2d.F?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm/pkg/ctrl/ctrl_map_gentim2d.F?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm/pkg/ctrl/ctrl_map_ini_genarr.F?view=markup
http://mitgcm.org/viewvc/MITgcm/MITgcm/pkg/ctrl/ctrl_cost_gen.F?view=markup
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_cs32/input_ad/data.ctrl
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/input_itXX/data.ctrl
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/code/CTRL_OPTIONS.h

Compiling options are typically found in the ‘code/’ directory of any given setup of MIT-221

gcm (when customized) or in the corresponding MITgcm package (when using defaults). The222

most obvious difference between the new setup and an old setup is that CPP OPTIONS.h now223

disregards ECCO CPPOPTIONS.h and uses the following instead :224

• AUTODIFF OPTIONS.h contains the few compile directives of pkg/autodiff. The maxi-225

mum numbers of time steps are set in tamc.h226

• ECCO OPTIONS.h contains compile directives of pkg/ecco. Very few remain necessary,227

since all generic cost function settings can now be chosen at run time. The maximum228

numbers of cost terms are set in ecco.h229

• CTRL OPTIONS.h contains compile directives of pkg/ctrl. Very few remain necessary,230

since all generic control settings can now be chosen at run time. The maximum numbers231

of controls are set in CTRL SIZE.h232

• along with MOM COMMON OPTIONS.h, GMREDI OPTIONS.h, GGL90 OPTIONS.h,233

PROFILES OPTIONS.h, EXF OPTIONS.h, SEAICE OPTIONS.h, DIAG OPTIONS.h234

16

http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/code/
http://mitgcm.org/viewvc/MITgcm/MITgcm/verification/lab_sea/code_ad/
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/code/CPP_OPTIONS.h
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/code/ECCO_CPPOPTIONS.h
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/code/AUTODIFF_OPTIONS.h
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/code/ECCO_OPTIONS.h
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/code/CTRL_OPTIONS.h

	downloads
	MITgcm
	ECCO v4 setup
	ECCO v4 solution
	Diagnostic Tools

	MITgcm runs
	regression tests
	full ECCO v4 runs

	re-implemented ecco and ctrl packages
	pkg/ecco run-time parameters
	pkg/ctrl run-time parameters
	MITgcm compiling options

