1 |
roquet |
1.1 |
|
2 |
|
|
function DEPTHM = sw_dpth(P,LAT) |
3 |
|
|
|
4 |
|
|
% SW_DPTH Depth from pressure |
5 |
|
|
%=========================================================================== |
6 |
|
|
% SW_DPTH $Id: sw_dpth.m,v 1.1 2003/12/12 04:23:22 pen078 Exp $ |
7 |
|
|
% Copyright (C) CSIRO, Phil Morgan 1992. |
8 |
|
|
% |
9 |
|
|
% USAGE: dpth = sw_dpth(P,LAT) |
10 |
|
|
% |
11 |
|
|
% DESCRIPTION: |
12 |
|
|
% Calculates depth in metres from pressure in dbars. |
13 |
|
|
% |
14 |
|
|
% INPUT: (all must have same dimensions) |
15 |
|
|
% P = Pressure [db] |
16 |
|
|
% LAT = Latitude in decimal degress north [-90..+90] |
17 |
|
|
% (lat may have dimensions 1x1 or 1xn where P(mxn). |
18 |
|
|
% |
19 |
|
|
% OUTPUT: |
20 |
|
|
% dpth = depth [metres] |
21 |
|
|
% |
22 |
|
|
% AUTHOR: Phil Morgan 92-04-06 (morgan@ml.csiro.au) |
23 |
|
|
% |
24 |
|
|
% DISCLAIMER: |
25 |
|
|
% This software is provided "as is" without warranty of any kind. |
26 |
|
|
% See the file sw_copy.m for conditions of use and licence. |
27 |
|
|
% |
28 |
|
|
% REFERENCES: |
29 |
|
|
% Unesco 1983. Algorithms for computation of fundamental properties of |
30 |
|
|
% seawater, 1983. _Unesco Tech. Pap. in Mar. Sci._, No. 44, 53 pp. |
31 |
|
|
%========================================================================= |
32 |
|
|
|
33 |
|
|
% Modifications |
34 |
|
|
% 99-06-25. Lindsay Pender, Fixed transpose of row vectors. |
35 |
|
|
|
36 |
|
|
% CALLER: general purpose |
37 |
|
|
% CALLEE: none |
38 |
|
|
|
39 |
|
|
%------------- |
40 |
|
|
% CHECK INPUTS |
41 |
|
|
%------------- |
42 |
|
|
[mP,nP] = size(P); |
43 |
|
|
[mL,nL] = size(LAT); |
44 |
|
|
if mL==1 & nL==1 % LAT scalar - fill to size of P |
45 |
|
|
LAT = LAT*ones(size(P)); |
46 |
|
|
|
47 |
|
|
elseif nP == nL & mL == 1 % LAT is row vector |
48 |
|
|
LAT = LAT(ones(1, mP), :); % Coppy down each column |
49 |
|
|
|
50 |
|
|
elseif mP == mL & nL == 1 % LAT is column vector |
51 |
|
|
LAT = LAT(:, ones(1, nP)); % Copy across each row |
52 |
|
|
|
53 |
|
|
elseif mP == mL & nP == nL |
54 |
|
|
% Ok |
55 |
|
|
|
56 |
|
|
else |
57 |
|
|
error('sw_depth.m: Inputs arguments have wrong dimensions') |
58 |
|
|
end %if |
59 |
|
|
|
60 |
|
|
%------------- |
61 |
|
|
% BEGIN |
62 |
|
|
%------------- |
63 |
|
|
% Eqn 25, p26. Unesco 1983. |
64 |
|
|
|
65 |
|
|
DEG2RAD = pi/180; |
66 |
|
|
c1 = +9.72659; |
67 |
|
|
c2 = -2.2512E-5; |
68 |
|
|
c3 = +2.279E-10; |
69 |
|
|
c4 = -1.82E-15; |
70 |
|
|
gam_dash = 2.184e-6; |
71 |
|
|
|
72 |
|
|
LAT = abs(LAT); |
73 |
|
|
X = sin(LAT*DEG2RAD); % convert to radians |
74 |
|
|
X = X.*X; |
75 |
|
|
bot_line = 9.780318*(1.0+(5.2788E-3+2.36E-5*X).*X) + gam_dash*0.5*P; |
76 |
|
|
top_line = (((c4*P+c3).*P+c2).*P+c1).*P; |
77 |
|
|
DEPTHM = top_line./bot_line; |
78 |
|
|
return |
79 |
|
|
%=========================================================================== |
80 |
|
|
% |
81 |
|
|
|