1 |
function [profOut]=MITprof_resample(profIn,fldIn,filOut,method,varargin); |
function [profOut]=MITprof_resample(profIn,fldIn,filOut,method); |
|
%object: resample a set of fields in file filFldIn with specified time |
|
|
% line timeIn to the positions of profIn and add to file filOut |
|
|
%inputs: profIn is a gcmfaces field (nan-masked; up to N3,N4 dimensions) |
|
|
% fldIn is a description of the fields being resampled including |
|
|
% the corresponding file name and additional specs : |
|
|
% fldIn.name, fldIn.long_name, fldIn.units, fldIn.fil (file |
|
|
% name) and fldIn.tim (time axis specification). Supported |
|
|
% fldIn.tim spec: 'const' (for time invariant climatology), |
|
|
% 'monclim' (for monthly climatology), 'monser' (for monthly |
|
|
% time series) |
|
|
% filOut is the output MITprof file name (if un-specified |
|
|
% the resul may only be returned as a function argument) |
|
|
% method may be 'polygons' (or 'TriScatteredInterp' ... via |
|
|
% gcmfaces_interp_2d in a loop ... to be implemented later) |
|
|
%outputs: profOut is the MITprof structure where the interpolated values |
|
|
% were appended to profIn (if un-specified the result |
|
|
% may only be returned to output file) |
|
2 |
% |
% |
3 |
%filFldIn is assumed to be 3D and binary at this point |
%[profOut]=MITPROF_RESAMPLE(profIn,fldIn,filOut,method); |
4 |
|
% |
5 |
|
% resamples a set of fields (fldIn) to profile 3D locations (profIn) |
6 |
|
% and output the result to nc file (filOut) and memory (profOut). |
7 |
|
% using a chosen interpolation method (method). |
8 |
|
% |
9 |
|
% profIn (structure) should contain: prof_depth, prof_lon, prof_lat, prof_date |
10 |
|
% fldIn (structure) should contain: fil, name, long_name, units, tim, |
11 |
|
% missing_value, and FillValue (for nc output). |
12 |
|
% |
13 |
|
% fldIn.tim can be set to |
14 |
|
% 'const' (for time invariant climatology), |
15 |
|
% 'monclim' (for monthly climatology) |
16 |
|
% 'monser' (for monthly time series) |
17 |
|
% 'monloop' (for cyclic monthly time series) |
18 |
|
% |
19 |
|
% method can be set to |
20 |
|
% 'polygons' (linear in space) |
21 |
|
% 'bindata' (nearest neighbor in space) |
22 |
|
% |
23 |
|
%note to self: add case when fldIn is a gcmfaces field; nctiles input |
24 |
|
% |
25 |
|
% Example: |
26 |
|
% grid_load; gcmfaces_global; MITprof_global; addpath matlab/; |
27 |
|
% profIn=idma_float_plot('4900828'); |
28 |
|
% % |
29 |
|
% fldIn.fil=fullfile(myenv.MITprof_climdir,filesep,'T_OWPv1_M_eccollc_90x50.bin'); |
30 |
|
% fldIn.name='prof_Towp'; |
31 |
|
% fldIn.long_name='pot. temp. estimate (OCCA-WOA-PHC combination)'; |
32 |
|
% fldIn.units='degree C'; |
33 |
|
% fldIn.tim='monclim'; |
34 |
|
% fldIn.missing_value=-9999.; |
35 |
|
% fldIn.FillValue=-9999.; |
36 |
|
% % |
37 |
|
% profOut=MITprof_resample(profIn,fldIn); |
38 |
|
|
39 |
|
|
40 |
gcmfaces_global; |
gcmfaces_global; |
41 |
|
|
53 |
tim_prof=(profIn.prof_date-tmp2); |
tim_prof=(profIn.prof_date-tmp2); |
54 |
tim_prof(tim_prof>365)=365; |
tim_prof(tim_prof>365)=365; |
55 |
tim_prof=tim_prof/365*12;%neglecting differences in months length |
tim_prof=tim_prof/365*12;%neglecting differences in months length |
56 |
elseif strcmp(fldIn.tim,'const'); |
elseif strcmp(fldIn.tim,'monloop'); |
57 |
tim_fld=[1 2]; rec_fld=[1 2]; |
tmp1=dir(fldIn.fil); |
58 |
|
nt=tmp1.bytes/prod(mygrid.ioSize)/length(mygrid.RC)/4; |
59 |
|
tmp1=[1:nt]'; tmp2=ones(nt,1)*[1992 1 15 0 0 0]; tmp2(:,2)=tmp1; |
60 |
|
tim_fld=datenum(tmp2); |
61 |
|
tim_fld=[tim_fld(1)-31 tim_fld' tim_fld(end)+31]; |
62 |
|
rec_fld=[nt 1:nt 1]; |
63 |
|
tmp1=datenum([1992 1 1 0 0 0]); |
64 |
|
tmp2=datenum([1992+nt/12 1 1 0 0 0]);; |
65 |
|
tim_prof=tmp1+mod(profIn.prof_date-tmp1,tmp2-tmp1); |
66 |
|
%round up tim_prof to prevent interpolation in time: |
67 |
|
% tmp3=tim_prof*ones(1,length(tim_fld))-ones(length(tim_prof),1)*tim_fld; |
68 |
|
% tmp4=sum(tmp3>0,2); |
69 |
|
% tim_prof=tim_fld(tmp4)'; |
70 |
|
elseif strcmp(fldIn.tim,'const')|strcmp(fldIn.tim,'std'); |
71 |
|
tim_fld=[1 2]; rec_fld=[1 1]; |
72 |
tim_prof=1.5*ones(profIn.np,1); |
tim_prof=1.5*ones(profIn.np,1); |
73 |
else; |
else; |
74 |
error('this case remains to be implemented'); |
error('this case remains to be implemented'); |
79 |
profOut=NaN*ones(profIn.np,profIn.nr); |
profOut=NaN*ones(profIn.np,profIn.nr); |
80 |
|
|
81 |
%2) loop over record pairs |
%2) loop over record pairs |
82 |
|
if ~strcmp(method,'bindata'); gcmfaces_bindata; end; |
83 |
for tt=1:length(rec_fld)-1; |
for tt=1:length(rec_fld)-1; |
84 |
fld0=read_bin(fldIn.fil,rec_fld(tt)); |
tt |
85 |
fld1=read_bin(fldIn.fil,rec_fld(tt+1)); |
% |
86 |
|
fld0=mygrid.mskC.*read_bin(fldIn.fil,rec_fld(tt)); |
87 |
|
fld1=mygrid.mskC.*read_bin(fldIn.fil,rec_fld(tt+1)); |
88 |
ndim=length(size(fld0{1})); |
ndim=length(size(fld0{1})); |
89 |
fld=cat(ndim+1,fld0,fld1); |
fld=cat(ndim+1,fld0,fld1); |
90 |
% |
% |
91 |
ii=find(tim_prof>=tim_fld(tt)&tim_prof<tim_fld(tt+1)); |
ii=find(tim_prof>=tim_fld(tt)&tim_prof<tim_fld(tt+1)); |
92 |
if ~isempty(ii); |
if ~isempty(ii); |
93 |
arr=gcmfaces_interp(fld,lon(ii),lat(ii),'polygons'); |
if ~strcmp(method,'bindata'); |
94 |
|
arr=gcmfaces_interp_2d(fld,lon(ii),lat(ii),method); |
95 |
|
arr2=gcmfaces_interp_1d(2,depIn,arr,depOut); |
96 |
|
%now linear in time: |
97 |
|
k0=floor(tim_prof(ii)); k1=k0+1; |
98 |
|
a0=tim_prof(ii)-k0; a0=a0*ones(1,profIn.nr); |
99 |
|
profOut(ii,:)=(1-a0).*arr2(:,:,1)+a0.*arr2(:,:,2); |
100 |
|
else; |
101 |
|
[prof_i,prof_j]=gcmfaces_bindata(lon(ii),lat(ii)); |
102 |
|
FLD=convert2array(fld(:,:,:,1)); |
103 |
|
nk=length(mygrid.RC); kk=ones(1,nk); |
104 |
|
np=length(ii); pp=ones(np,1); |
105 |
|
ind2prof=sub2ind(size(FLD),prof_i*kk,prof_j*kk,pp*[1:nk]); |
106 |
|
arr=FLD(ind2prof); |
107 |
arr2=gcmfaces_interp_1d(2,depIn,arr,depOut); |
arr2=gcmfaces_interp_1d(2,depIn,arr,depOut); |
108 |
end; |
profOut(ii,:)=arr2; |
109 |
% |
end; |
110 |
k0=floor(tim_prof(ii)); k1=k0+1; |
% |
111 |
a0=tim_prof(ii)-k0; a0=a0*ones(1,profIn.nr); |
if strcmp(fldIn.tim,'std'); |
112 |
profOut(ii,:)=(1-a0).*arr2(:,:,1)+a0.*arr2(:,:,2); |
profOut(ii,:)=profOut(ii,:).*randn(size(profOut(ii,:))); |
113 |
|
end; |
114 |
|
end; |
115 |
end; |
end; |
116 |
|
|
117 |
%3) deal with file output |
%3) deal with file output |