| 1 |
C $Header: /u/gcmpack/MITgcm_contrib/gael/pkg/smooth2/smooth_rhs.F,v 1.1 2009/10/24 23:27:24 gforget Exp $ |
| 2 |
C $Name: $ |
| 3 |
|
| 4 |
#include "CPP_OPTIONS.h" |
| 5 |
|
| 6 |
C !INTERFACE: ========================================================== |
| 7 |
SUBROUTINE smooth_rhs(fld_in,gt_in,myThid) |
| 8 |
|
| 9 |
C *==========================================================* |
| 10 |
C | SUBROUTINE smooth_rhs |
| 11 |
C | o As part of smooth_diff3D, this routine computes the |
| 12 |
C | right hand side of the tendency equation (see below). |
| 13 |
C | It is made of bits from model/src and pkg/generic_advdiff |
| 14 |
C | pieced togheter. |
| 15 |
C *==========================================================* |
| 16 |
|
| 17 |
|
| 18 |
C !DESCRIPTION: |
| 19 |
C Calculates the tendency of a tracer due to advection and diffusion. |
| 20 |
C It calculates the fluxes in each direction indepentently and then |
| 21 |
C sets the tendency to the divergence of these fluxes. The advective |
| 22 |
C fluxes are only calculated here when using the linear advection schemes |
| 23 |
C otherwise only the diffusive and parameterized fluxes are calculated. |
| 24 |
C |
| 25 |
C Contributions to the flux are calculated and added: |
| 26 |
C \begin{equation*} |
| 27 |
C {\bf F} = {\bf F}_{adv} + {\bf F}_{diff} +{\bf F}_{GM} + {\bf F}_{KPP} |
| 28 |
C \end{equation*} |
| 29 |
C |
| 30 |
C The tendency is the divergence of the fluxes: |
| 31 |
C \begin{equation*} |
| 32 |
C G_\theta = G_\theta + \nabla \cdot {\bf F} |
| 33 |
C \end{equation*} |
| 34 |
C |
| 35 |
C The tendency is assumed to contain data on entry. |
| 36 |
|
| 37 |
C !USES: =============================================================== |
| 38 |
IMPLICIT NONE |
| 39 |
#include "SIZE.h" |
| 40 |
#include "EEPARAMS.h" |
| 41 |
#include "PARAMS.h" |
| 42 |
#include "GRID.h" |
| 43 |
#include "SURFACE.h" |
| 44 |
|
| 45 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 46 |
#include "tamc.h" |
| 47 |
#include "tamc_keys.h" |
| 48 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
| 49 |
|
| 50 |
#include "smooth.h" |
| 51 |
|
| 52 |
C !INPUT PARAMETERS: =================================================== |
| 53 |
|
| 54 |
|
| 55 |
INTEGER bi,bj,iMin,iMax,jMin,jMax |
| 56 |
_RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 57 |
_RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 58 |
_RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 59 |
_RL dTdz (nSx,nSy) |
| 60 |
_RL dTdx (nSx,nSy) |
| 61 |
_RL dTdy (nSx,nSy) |
| 62 |
INTEGER myThid |
| 63 |
INTEGER i,j,k |
| 64 |
|
| 65 |
_RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nR,nSx,nSy) |
| 66 |
_RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nR,nSx,nSy) |
| 67 |
_RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nR,nSx,nSy) |
| 68 |
_RL df (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 69 |
_RL fld_in(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr,nSx,nSy) |
| 70 |
_RL gt_in(1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr,nSx,nSy) |
| 71 |
|
| 72 |
DO bj=myByLo(myThid),myByHi(myThid) |
| 73 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 74 |
|
| 75 |
|
| 76 |
c 1rst k loop: initialization |
| 77 |
DO k=1,Nr |
| 78 |
DO j=1-OLy,sNy+OLy |
| 79 |
DO i=1-OLx,sNx+OLx |
| 80 |
fZon(i,j,k,bi,bj) = 0. _d 0 |
| 81 |
fMer(i,j,k,bi,bj) = 0. _d 0 |
| 82 |
fVerT(i,j,k,bi,bj) = 0. _d 0 |
| 83 |
gt_in(i,j,k,bi,bj) = 0. _d 0 |
| 84 |
ENDDO |
| 85 |
ENDDO |
| 86 |
ENDDO |
| 87 |
|
| 88 |
|
| 89 |
iMin = 1-OLx+1 |
| 90 |
iMax = sNx+OLx-1 |
| 91 |
jMin = 1-OLy+1 |
| 92 |
jMax = sNy+OLy-1 |
| 93 |
|
| 94 |
c 2nd k loop: flux computation |
| 95 |
DO k=1,Nr |
| 96 |
|
| 97 |
DO j=1-OLy,sNy+OLy |
| 98 |
DO i=1-OLx,sNx+OLx |
| 99 |
df(i,j,bi,bj) = 0. _d 0 |
| 100 |
xA(i,j,bi,bj) = _dyG(i,j,bi,bj) |
| 101 |
& *drF(k)*_hFacW(i,j,k,bi,bj) |
| 102 |
yA(i,j,bi,bj) = _dxG(i,j,bi,bj) |
| 103 |
& *drF(k)*_hFacS(i,j,k,bi,bj) |
| 104 |
IF (K .EQ. 1) THEN |
| 105 |
maskUp(i,j,bi,bj) = 0. |
| 106 |
ELSE |
| 107 |
maskUp(i,j,bi,bj) = |
| 108 |
& maskC(i,j,k-1,bi,bj)*maskC(i,j,k,bi,bj) |
| 109 |
ENDIF |
| 110 |
ENDDO |
| 111 |
ENDDO |
| 112 |
|
| 113 |
|
| 114 |
c ///gmredi_xtr/// |
| 115 |
|
| 116 |
DO j=jMin,jMax |
| 117 |
DO i=iMin,iMax |
| 118 |
df(i,j,bi,bj) = df(i,j,bi,bj) |
| 119 |
& -xA(i,j,bi,bj) |
| 120 |
& *smooth3D_Kux(i,j,k,bi,bj) |
| 121 |
& *recip_dxC(i,j,bi,bj) |
| 122 |
& *(fld_in(i,j,k,bi,bj)-fld_in(i-1,j,k,bi,bj)) |
| 123 |
ENDDO |
| 124 |
ENDDO |
| 125 |
|
| 126 |
DO j=jMin,jMax |
| 127 |
DO i=iMin,iMax |
| 128 |
dTdz(bi,bj) = 0.5*( |
| 129 |
& +0.5*recip_drC(k)* |
| 130 |
& ( maskC(i-1,j,k,bi,bj)* |
| 131 |
& (fld_in(i-1,j, MAX(k-1,1) ,bi,bj)-fld_in(i-1,j,k,bi,bj)) |
| 132 |
& +maskC( i ,j,k,bi,bj)* |
| 133 |
& (fld_in( i ,j, MAX(k-1,1) ,bi,bj)-fld_in( i ,j,k,bi,bj)) |
| 134 |
& ) |
| 135 |
& +0.5*recip_drC(MIN(k+1,Nr))* |
| 136 |
& ( maskC(i-1,j,MIN(k+1,Nr),bi,bj)* |
| 137 |
& (fld_in(i-1,j,k,bi,bj)-fld_in(i-1,j,MIN(k+1,Nr),bi,bj)) |
| 138 |
& +maskC( i ,j,MIN(k+1,Nr),bi,bj)* |
| 139 |
& (fld_in( i ,j,k,bi,bj)-fld_in( i ,j,MIN(k+1,Nr),bi,bj)) |
| 140 |
& ) ) |
| 141 |
df(i,j,bi,bj) = df(i,j,bi,bj) |
| 142 |
& - xA(i,j,bi,bj)*smooth3D_Kuz(i,j,k,bi,bj)*dTdz(bi,bj) |
| 143 |
ENDDO |
| 144 |
ENDDO |
| 145 |
|
| 146 |
DO j=jMin,jMax |
| 147 |
DO i=iMin,iMax |
| 148 |
dTdy(bi,bj) = 0.5*( |
| 149 |
& +0.5*(maskS(i,j,k,bi,bj) |
| 150 |
& *recip_dyC(i,j,bi,bj)* |
| 151 |
& (fld_in(i,j,k,bi,bj)-fld_in(i,j-1,k,bi,bj)) |
| 152 |
& +maskS(i,j+1,k,bi,bj) |
| 153 |
& *recip_dyC(i,j+1,bi,bj)* |
| 154 |
& (fld_in(i,j+1,k,bi,bj)-fld_in(i,j,k,bi,bj))) |
| 155 |
& +0.5*(maskS(i-1,j,k,bi,bj) |
| 156 |
& *recip_dyC(i,j,bi,bj)* |
| 157 |
& (fld_in(i-1,j,k,bi,bj)-fld_in(i-1,j-1,k,bi,bj)) |
| 158 |
& +maskS(i-1,j+1,k,bi,bj) |
| 159 |
& *recip_dyC(i,j+1,bi,bj)* |
| 160 |
& (fld_in(i-1,j+1,k,bi,bj)-fld_in(i-1,j,k,bi,bj))) |
| 161 |
& ) |
| 162 |
df(i,j,bi,bj) = df(i,j,bi,bj) |
| 163 |
& - xA(i,j,bi,bj)*smooth3D_Kuy(i,j,k,bi,bj)*dTdy(bi,bj) |
| 164 |
ENDDO |
| 165 |
ENDDO |
| 166 |
|
| 167 |
|
| 168 |
c /// end for x /// |
| 169 |
|
| 170 |
DO j=jMin,jMax |
| 171 |
DO i=iMin,iMax |
| 172 |
fZon(i,j,k,bi,bj) = fZon(i,j,k,bi,bj) + df(i,j,bi,bj) |
| 173 |
ENDDO |
| 174 |
ENDDO |
| 175 |
|
| 176 |
DO j=jMin,jMax |
| 177 |
DO i=iMin,iMax |
| 178 |
df(i,j,bi,bj) = 0. |
| 179 |
ENDDO |
| 180 |
ENDDO |
| 181 |
|
| 182 |
c ///gmredi_ytr/// |
| 183 |
|
| 184 |
DO j=jMin,jMax |
| 185 |
DO i=iMin,iMax |
| 186 |
df(i,j,bi,bj) = df(i,j,bi,bj) |
| 187 |
& -yA(i,j,bi,bj) |
| 188 |
& *smooth3D_Kvy(i,j,k,bi,bj) |
| 189 |
& *recip_dyC(i,j,bi,bj) |
| 190 |
& *(fld_in(i,j,k,bi,bj)-fld_in(i,j-1,k,bi,bj)) |
| 191 |
ENDDO |
| 192 |
ENDDO |
| 193 |
|
| 194 |
DO j=jMin,jMax |
| 195 |
DO i=iMin,iMax |
| 196 |
dTdz(bi,bj) = 0.5*( |
| 197 |
& +0.5*recip_drC(k)* |
| 198 |
& ( maskC(i,j-1,k,bi,bj)* |
| 199 |
& (fld_in(i,j-1,MAX(k-1,1),bi,bj)-fld_in(i,j-1,k,bi,bj)) |
| 200 |
& +maskC(i, j ,k,bi,bj)* |
| 201 |
& (fld_in(i, j ,MAX(k-1,1),bi,bj)-fld_in(i, j ,k,bi,bj)) |
| 202 |
& ) |
| 203 |
& +0.5*recip_drC(MIN(k+1,Nr))* |
| 204 |
& ( maskC(i,j-1,MIN(k+1,Nr),bi,bj)* |
| 205 |
& (fld_in(i,j-1,k,bi,bj)-fld_in(i,j-1,MIN(k+1,Nr),bi,bj)) |
| 206 |
& +maskC(i, j ,MIN(k+1,Nr),bi,bj)* |
| 207 |
& (fld_in(i, j ,k,bi,bj)-fld_in(i, j ,MIN(k+1,Nr),bi,bj)) |
| 208 |
& ) ) |
| 209 |
df(i,j,bi,bj) = df(i,j,bi,bj) |
| 210 |
& - yA(i,j,bi,bj)*smooth3D_Kvz(i,j,k,bi,bj)*dTdz(bi,bj) |
| 211 |
ENDDO |
| 212 |
ENDDO |
| 213 |
|
| 214 |
DO j=jMin,jMax |
| 215 |
DO i=iMin,iMax |
| 216 |
dTdx(bi,bj) = 0.5*( |
| 217 |
& +0.5*(maskW(i+1,j,k,bi,bj) |
| 218 |
& *recip_dxC(i+1,j,bi,bj)* |
| 219 |
& (fld_in(i+1,j,k,bi,bj)-fld_in(i,j,k,bi,bj)) |
| 220 |
& +maskW(i,j,k,bi,bj) |
| 221 |
& *recip_dxC(i,j,bi,bj)* |
| 222 |
& (fld_in(i,j,k,bi,bj)-fld_in(i-1,j,k,bi,bj))) |
| 223 |
& +0.5*(maskW(i+1,j-1,k,bi,bj) |
| 224 |
& *recip_dxC(i+1,j,bi,bj)* |
| 225 |
& (fld_in(i+1,j-1,k,bi,bj)-fld_in(i,j-1,k,bi,bj)) |
| 226 |
& +maskW(i,j-1,k,bi,bj) |
| 227 |
& *recip_dxC(i,j,bi,bj)* |
| 228 |
& (fld_in(i,j-1,k,bi,bj)-fld_in(i-1,j-1,k,bi,bj))) |
| 229 |
& ) |
| 230 |
df(i,j,bi,bj) = df(i,j,bi,bj) |
| 231 |
& - yA(i,j,bi,bj)*smooth3D_Kvx(i,j,k,bi,bj)*dTdx(bi,bj) |
| 232 |
ENDDO |
| 233 |
ENDDO |
| 234 |
|
| 235 |
c /// end for y /// |
| 236 |
|
| 237 |
DO j=jMin,jMax |
| 238 |
DO i=iMin,iMax |
| 239 |
fMer(i,j,k,bi,bj) = fMer(i,j,k,bi,bj) + df(i,j,bi,bj) |
| 240 |
ENDDO |
| 241 |
ENDDO |
| 242 |
|
| 243 |
DO j=jMin,jMax |
| 244 |
DO i=iMin,iMax |
| 245 |
df(i,j,bi,bj) = 0. |
| 246 |
ENDDO |
| 247 |
ENDDO |
| 248 |
|
| 249 |
c /// GAD_DIFF_R /// |
| 250 |
|
| 251 |
if (.NOT. smooth3DdoImpldiff ) then |
| 252 |
|
| 253 |
IF (k.gt.1) then |
| 254 |
DO j=jMin,jMax |
| 255 |
DO i=iMin,iMax |
| 256 |
df(i,j,bi,bj) = |
| 257 |
& -_rA(i,j,bi,bj) |
| 258 |
& *smooth3D_kappaR(i,j,k,bi,bj)*recip_drC(k) |
| 259 |
& *(fld_in(i,j,k,bi,bj) |
| 260 |
& -fld_in(i,j,k-1,bi,bj))*rkSign |
| 261 |
ENDDO |
| 262 |
ENDDO |
| 263 |
ENDIF |
| 264 |
|
| 265 |
endif |
| 266 |
|
| 267 |
c ///gmredi rtrans/// |
| 268 |
|
| 269 |
IF (K.GT.1) THEN |
| 270 |
DO j=jMin,jMax |
| 271 |
DO i=iMin,iMax |
| 272 |
dTdx(bi,bj) = 0.5*( |
| 273 |
& +0.5*(maskW(i+1,j,k,bi,bj) |
| 274 |
& *recip_dxC(i+1,j,bi,bj)* |
| 275 |
& (fld_in(i+1,j,k,bi,bj)-fld_in(i,j,k,bi,bj)) |
| 276 |
& +maskW(i,j,k,bi,bj) |
| 277 |
& *recip_dxC(i,j,bi,bj)* |
| 278 |
& (fld_in(i,j,k,bi,bj)-fld_in(i-1,j,k,bi,bj))) |
| 279 |
& +0.5*(maskW(i+1,j,k-1,bi,bj) |
| 280 |
& *recip_dxC(i+1,j,bi,bj)* |
| 281 |
& (fld_in(i+1,j,k-1,bi,bj)-fld_in(i,j,k-1,bi,bj)) |
| 282 |
& +maskW(i,j,k-1,bi,bj) |
| 283 |
& *recip_dxC(i,j,bi,bj)* |
| 284 |
& (fld_in(i,j,k-1,bi,bj)-fld_in(i-1,j,k-1,bi,bj))) |
| 285 |
& ) |
| 286 |
|
| 287 |
dTdy(bi,bj) = 0.5*( |
| 288 |
& +0.5*(maskS(i,j,k,bi,bj) |
| 289 |
& *recip_dyC(i,j,bi,bj)* |
| 290 |
& (fld_in(i,j,k,bi,bj)-fld_in(i,j-1,k,bi,bj)) |
| 291 |
& +maskS(i,j+1,k,bi,bj) |
| 292 |
& *recip_dyC(i,j+1,bi,bj)* |
| 293 |
& (fld_in(i,j+1,k,bi,bj)-fld_in(i,j,k,bi,bj))) |
| 294 |
& +0.5*(maskS(i,j,k-1,bi,bj) |
| 295 |
& *recip_dyC(i,j,bi,bj)* |
| 296 |
& (fld_in(i,j,k-1,bi,bj)-fld_in(i,j-1,k-1,bi,bj)) |
| 297 |
& +maskS(i,j+1,k-1,bi,bj) |
| 298 |
& *recip_dyC(i,j+1,bi,bj)* |
| 299 |
& (fld_in(i,j+1,k-1,bi,bj)-fld_in(i,j,k-1,bi,bj))) |
| 300 |
& ) |
| 301 |
|
| 302 |
df(i,j,bi,bj) = df(i,j,bi,bj) |
| 303 |
& - rA(i,j,bi,bj) |
| 304 |
& *( smooth3D_Kwx(i,j,k,bi,bj)*dTdx(bi,bj) |
| 305 |
& +smooth3D_Kwy(i,j,k,bi,bj)*dTdy(bi,bj) ) |
| 306 |
|
| 307 |
ENDDO |
| 308 |
ENDDO |
| 309 |
|
| 310 |
ENDIF |
| 311 |
|
| 312 |
|
| 313 |
c /// end for r /// |
| 314 |
|
| 315 |
IF (K.GT.1) THEN |
| 316 |
DO j=jMin,jMax |
| 317 |
DO i=iMin,iMax |
| 318 |
fVerT(i,j,k-1,bi,bj) = fVerT(i,j,k-1,bi,bj) + |
| 319 |
& df(i,j,bi,bj)*maskUp(i,j,bi,bj) |
| 320 |
ENDDO |
| 321 |
ENDDO |
| 322 |
ENDIF |
| 323 |
|
| 324 |
DO j=jMin,jMax |
| 325 |
DO i=iMin,iMax |
| 326 |
df(i,j,bi,bj) = 0. |
| 327 |
ENDDO |
| 328 |
ENDDO |
| 329 |
|
| 330 |
ENDDO |
| 331 |
|
| 332 |
ENDDO |
| 333 |
ENDDO |
| 334 |
|
| 335 |
c these exchanges are crucial: |
| 336 |
CALL EXCH_UV_XYZ_RL(fZon,fMer,.TRUE.,myThid) |
| 337 |
_EXCH_XYZ_RL ( fVerT, myThid ) |
| 338 |
|
| 339 |
DO bj=myByLo(myThid),myByHi(myThid) |
| 340 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 341 |
c 3rd k loop: Divergence of fluxes |
| 342 |
DO k=1,Nr |
| 343 |
IF (K.GT.1) THEN |
| 344 |
DO j=jMin,jMax |
| 345 |
DO i=iMin,iMax |
| 346 |
gt_in(i,j,k,bi,bj)=gt_in(i,j,k,bi,bj) |
| 347 |
& -_recip_hFacC(i,j,k,bi,bj)*recip_drF(k)*recip_rA(i,j,bi,bj) |
| 348 |
& *( (fZon(i+1,j,k,bi,bj)-fZon(i,j,k,bi,bj)) |
| 349 |
& +(fMer(i,j+1,k,bi,bj)-fMer(i,j,k,bi,bj)) |
| 350 |
& +(fVerT(i,j,k,bi,bj)-fVerT(i,j,k-1,bi,bj))*rkSign |
| 351 |
& ) |
| 352 |
ENDDO |
| 353 |
ENDDO |
| 354 |
ELSE |
| 355 |
DO j=jMin,jMax |
| 356 |
DO i=iMin,iMax |
| 357 |
gt_in(i,j,k,bi,bj)=gt_in(i,j,k,bi,bj) |
| 358 |
& -_recip_hFacC(i,j,k,bi,bj)*recip_drF(k)*recip_rA(i,j,bi,bj) |
| 359 |
& *( (fZon(i+1,j,k,bi,bj)-fZon(i,j,k,bi,bj)) |
| 360 |
& +(fMer(i,j+1,k,bi,bj)-fMer(i,j,k,bi,bj)) |
| 361 |
& +(fVerT(i,j,k,bi,bj))*rkSign |
| 362 |
& ) |
| 363 |
ENDDO |
| 364 |
ENDDO |
| 365 |
ENDIF |
| 366 |
ENDDO |
| 367 |
ENDDO |
| 368 |
ENDDO |
| 369 |
|
| 370 |
_EXCH_XYZ_RL ( gt_in , myThid ) |
| 371 |
|
| 372 |
END |
| 373 |
|