1 |
#include "CPP_OPTIONS.h" |
2 |
#include "GMREDI_OPTIONS.h" |
3 |
|
4 |
subroutine smooth_init3D (mythid) |
5 |
|
6 |
|
7 |
IMPLICIT NONE |
8 |
#include "SIZE.h" |
9 |
#include "EEPARAMS.h" |
10 |
#include "PARAMS.h" |
11 |
#include "DYNVARS.h" |
12 |
#include "GRID.h" |
13 |
#include "GAD.h" |
14 |
c#include "tamc.h" |
15 |
#include "FFIELDS.h" |
16 |
#include "EOS.h" |
17 |
#include "GMREDI.h" |
18 |
#include "smooth.h" |
19 |
|
20 |
|
21 |
c input |
22 |
c bi, bj : array indices |
23 |
c k : vertical index used for masking |
24 |
integer i,j,k, bi, bj, imin, imax, jmin, jmax |
25 |
integer itlo,ithi |
26 |
integer jtlo,jthi |
27 |
integer myThid |
28 |
character*( 80) fnamegeneric |
29 |
|
30 |
_RL wc01theta (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
31 |
_RL wc01salt (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
32 |
_RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
33 |
_RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
34 |
_RL rhokp1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
35 |
_RL sigmaX (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
36 |
_RL sigmaY (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
37 |
_RL sigmaR (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
38 |
c parameter to restrain the Kz based on grid cells |
39 |
_RL wc01_3D_KzMax |
40 |
c to rotate the diffusion |
41 |
_RL Kuxprime, Kvyprime, rotate_s2,rotate_cos,rotate_sin |
42 |
_RL rotaTmp1,rotaTmp2,rotaTmp3 |
43 |
integer ii,jj,kk |
44 |
# ifndef GM_EXTRA_DIAGONAL |
45 |
_RL Kuz (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
46 |
_RL Kvz (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
47 |
# endif |
48 |
|
49 |
jtlo = mybylo(mythid) |
50 |
jthi = mybyhi(mythid) |
51 |
itlo = mybxlo(mythid) |
52 |
ithi = mybxhi(mythid) |
53 |
|
54 |
wc01_dt=1. |
55 |
wc01_T=wc01_nbt(smoothOpNbCur)*wc01_dt |
56 |
|
57 |
WRITE(standardMessageUnit,'(A,2I4,/,3f5.2)') |
58 |
& 'smooth 3D default parameters: ', |
59 |
& wc01_nbt(smoothOpNbCur),wc01_T, |
60 |
& wc01_3D_Lx0(smoothOpNbCur),wc01_3D_Ly0(smoothOpNbCur), |
61 |
& wc01_3D_Lz0(smoothOpNbCur) |
62 |
|
63 |
cgf "pour rotation H: sauver nouveaux champs" |
64 |
cgf "et poser une limite [deep interior -> isotropic]" |
65 |
cgf "... eviter les sauts de direction" |
66 |
|
67 |
c here fill the wc01_3D_Lz array |
68 |
if ((smooth3DtypeZ(smoothOpNbCur).NE.0).AND. |
69 |
& (smooth3DsizeZ(smoothOpNbCur).EQ.3)) then |
70 |
write(fnamegeneric(1:80),'(1a,i3.3)') |
71 |
& 'wc01_3DscalesZ',smoothOpNbCur |
72 |
call mdsreadfield(fnamegeneric,64,'RL',nR, |
73 |
& wc01_3D_Lz,1,mythid) |
74 |
_EXCH_XYZ_RL( wc01_3D_Lz, mythid ) |
75 |
else |
76 |
DO bj=jtlo,jthi |
77 |
DO bi=itlo,ithi |
78 |
DO k=1,Nr |
79 |
DO j=1-OLy,sNy+OLy |
80 |
DO i=1-OLx,sNx+OLx |
81 |
wc01_3D_Lz(i,j,k,bi,bj)=wc01_3D_Lz0(smoothOpNbCur) |
82 |
ENDDO |
83 |
ENDDO |
84 |
ENDDO |
85 |
ENDDO |
86 |
ENDDO |
87 |
endif |
88 |
|
89 |
|
90 |
c vertical diffusion |
91 |
DO bj=jtlo,jthi |
92 |
DO bi=itlo,ithi |
93 |
DO k=1,Nr |
94 |
DO j=1-OLy,sNy+OLy |
95 |
DO i=1-OLx,sNx+OLx |
96 |
kappaRwc01(i,j,k,bi,bj)=wc01_3D_Lz(i,j,k,bi,bj)* |
97 |
& wc01_3D_Lz(i,j,k,bi,bj)/wc01_T/2 |
98 |
ENDDO |
99 |
ENDDO |
100 |
ENDDO |
101 |
ENDDO |
102 |
ENDDO |
103 |
|
104 |
c begin: to restrain the Kz based on grid cells |
105 |
if (smooth3DsizeZ(smoothOpNbCur).NE.3) then |
106 |
DO bj=jtlo,jthi |
107 |
DO bi=itlo,ithi |
108 |
DO k=1,Nr |
109 |
DO j=1-OLy,sNy+OLy |
110 |
DO i=1-OLx,sNx+OLx |
111 |
|
112 |
wc01_3D_KzMax=drC(k) |
113 |
wc01_3D_KzMax=wc01_3D_KzMax*wc01_3D_KzMax/wc01_T/2 |
114 |
if (kappaRwc01(i,j,k,bi,bj).GT.wc01_3D_KzMax) then |
115 |
kappaRwc01(i,j,k,bi,bj)=wc01_3D_KzMax |
116 |
endif |
117 |
ENDDO |
118 |
ENDDO |
119 |
ENDDO |
120 |
ENDDO |
121 |
ENDDO |
122 |
endif |
123 |
c end: to restrain the Kz based on grid cells |
124 |
|
125 |
_EXCH_XYZ_RL( kappaRwc01, myThid ) |
126 |
|
127 |
c horizontal/isopycnal operator: |
128 |
|
129 |
DO bj=jtlo,jthi |
130 |
DO bi=itlo,ithi |
131 |
DO k=1,Nr |
132 |
DO j=1-OLy,sNy+OLy |
133 |
DO i=1-OLx,sNx+OLx |
134 |
wc01_Kuy(i,j,k,bi,bj)=0. |
135 |
wc01_Kvx(i,j,k,bi,bj)=0. |
136 |
ENDDO |
137 |
ENDDO |
138 |
ENDDO |
139 |
ENDDO |
140 |
ENDDO |
141 |
|
142 |
|
143 |
if ((smooth3DtypeH(smoothOpNbCur).EQ.2).OR. |
144 |
& (smooth3DtypeH(smoothOpNbCur).EQ.3)) then |
145 |
|
146 |
c isopycnal operator: |
147 |
|
148 |
write(fnamegeneric(1:80),'(1a,i3.3)') |
149 |
& 'wc01_3DscalesH',smoothOpNbCur |
150 |
|
151 |
call mdsreadfield(fnamegeneric,64,'RL',nR, |
152 |
& wc01theta,1,mythid) |
153 |
call mdsreadfield(fnamegeneric,64,'RL',nR, |
154 |
& wc01salt,2,mythid) |
155 |
_EXCH_XYZ_RL( wc01theta, mythid ) |
156 |
_EXCH_XYZ_RL( wc01salt, mythid ) |
157 |
|
158 |
if (smooth3DsizeH(smoothOpNbCur).EQ.3) then |
159 |
call mdsreadfield(fnamegeneric,64,'RL',nR, |
160 |
& wc01_3D_Lx,3,mythid) |
161 |
_EXCH_XYZ_RL( wc01_3D_Lx, mythid ) |
162 |
else |
163 |
DO bj=jtlo,jthi |
164 |
DO bi=itlo,ithi |
165 |
DO k=1,Nr |
166 |
DO j=1-OLy,sNy+OLy |
167 |
DO i=1-OLx,sNx+OLx |
168 |
wc01_3D_Lx(i,j,k,bi,bj)=wc01_3D_Lx0(smoothOpNbCur) |
169 |
ENDDO |
170 |
ENDDO |
171 |
ENDDO |
172 |
ENDDO |
173 |
ENDDO |
174 |
endif |
175 |
|
176 |
DO bj=jtlo,jthi |
177 |
DO bi=itlo,ithi |
178 |
DO k=1,Nr |
179 |
DO j=1-OLy,sNy+OLy |
180 |
DO i=1-OLx,sNx+OLx |
181 |
c here wc01_3D_Lx contains K divided by Kgmredi(=1000) |
182 |
wc01_3D_Lx(i,j,k,bi,bj)=wc01_3D_Lx(i,j,k,bi,bj)* |
183 |
& wc01_3D_Lx(i,j,k,bi,bj)/wc01_T/2 /1000 |
184 |
ENDDO |
185 |
ENDDO |
186 |
ENDDO |
187 |
ENDDO |
188 |
ENDDO |
189 |
|
190 |
_EXCH_XYZ_RL( wc01_3D_Lx, mythid ) |
191 |
|
192 |
iMin = 1-OLx |
193 |
iMax = sNx+OLx |
194 |
jMin = 1-OLy |
195 |
jMax = sNy+OLy |
196 |
|
197 |
DO bj=jtlo,jthi |
198 |
DO bi=itlo,ithi |
199 |
DO k=Nr,1,-1 |
200 |
CALL FIND_RHO_2D( |
201 |
I iMin, iMax, jMin, jMax, k, |
202 |
I wc01theta(1-OLx,1-OLy,k,bi,bj), |
203 |
I wc01salt(1-OLx,1-OLy,k,bi,bj), |
204 |
O rhoK(1-OLx,1-OLy,bi,bj), |
205 |
I k, bi, bj, myThid ) |
206 |
IF (k.GT.1) THEN |
207 |
CALL FIND_RHO_2D( |
208 |
I iMin, iMax, jMin, jMax, k, |
209 |
I wc01theta(1-OLx,1-OLy,k-1,bi,bj), |
210 |
I wc01salt(1-OLx,1-OLy,k-1,bi,bj), |
211 |
O rhoKm1(1-OLx,1-OLy,bi,bj), |
212 |
I k-1, bi, bj, myThid ) |
213 |
ELSE |
214 |
DO j=1-OLy,sNy+OLy |
215 |
DO i=1-OLx,sNx+OLx |
216 |
rhoKm1(i,j,bi,bj)=rhoK(i,j,bi,bj) |
217 |
ENDDO |
218 |
ENDDO |
219 |
ENDIF |
220 |
DO j=1-OLy,sNy+OLy |
221 |
DO i=1-OLx,sNx+OLx |
222 |
rhoKp1(i,j,bi,bj)=rhoK(i,j,bi,bj) |
223 |
ENDDO |
224 |
ENDDO |
225 |
cgf rk: GRAD_SIGMA ne calcule la derivee verticale au point w, entre Km1 et K |
226 |
CALL GRAD_SIGMA( |
227 |
& bi, bj, iMin, iMax, jMin, jMax, k, |
228 |
& rhoK(1-OLx,1-OLy,bi,bj), |
229 |
& rhoKm1(1-OLx,1-OLy,bi,bj), |
230 |
& rhoKp1(1-OLx,1-OLy,bi,bj), |
231 |
& sigmaX(1-OLx,1-OLy,1,bi,bj), |
232 |
& sigmaY(1-OLx,1-OLy,1,bi,bj), |
233 |
& sigmaR(1-OLx,1-OLy,1,bi,bj), |
234 |
I myThid ) |
235 |
ENDDO |
236 |
ENDDO |
237 |
ENDDO |
238 |
|
239 |
_EXCH_XYZ_RL( sigmaX, myThid ) |
240 |
_EXCH_XYZ_RL( sigmaY, myThid ) |
241 |
_EXCH_XYZ_RL( sigmaR, myThid ) |
242 |
|
243 |
DO bj=jtlo,jthi |
244 |
DO bi=itlo,ithi |
245 |
|
246 |
CALL GMREDI_CALC_TENSOR( |
247 |
I bi, bj, iMin, iMax, jMin, jMax, |
248 |
I sigmaX(1-OLx,1-OLy,1,bi,bj), |
249 |
& sigmaY(1-OLx,1-OLy,1,bi,bj), |
250 |
& sigmaR(1-OLx,1-OLy,1,bi,bj), |
251 |
I myThid ) |
252 |
|
253 |
DO k=1,Nr |
254 |
DO j=1-OLy,sNy+OLy |
255 |
DO i=1-OLx,sNx+OLx |
256 |
if (smooth3DtypeH(smoothOpNbCur).EQ.2) then |
257 |
Kwx(i,j,k,bi,bj)=wc01_3D_Lx(i,j,k,bi,bj)*Kwx(i,j,k,bi,bj) |
258 |
Kwy(i,j,k,bi,bj)=wc01_3D_Lx(i,j,k,bi,bj)*Kwy(i,j,k,bi,bj) |
259 |
# ifdef GM_EXTRA_DIAGONAL |
260 |
Kuz(i,j,k,bi,bj)=wc01_3D_Lx(i,j,k,bi,bj)*Kuz(i,j,k,bi,bj) |
261 |
Kvz(i,j,k,bi,bj)=wc01_3D_Lx(i,j,k,bi,bj)*Kvz(i,j,k,bi,bj) |
262 |
# else |
263 |
Kuz(i,j,k,bi,bj)=0. |
264 |
Kvz(i,j,k,bi,bj)=0. |
265 |
# endif |
266 |
else |
267 |
Kwx(i,j,k,bi,bj)=2*wc01_3D_Lx(i,j,k,bi,bj)*Kwx(i,j,k,bi,bj) |
268 |
Kwy(i,j,k,bi,bj)=2*wc01_3D_Lx(i,j,k,bi,bj)*Kwy(i,j,k,bi,bj) |
269 |
Kuz(i,j,k,bi,bj)=0. |
270 |
Kvz(i,j,k,bi,bj)=0. |
271 |
endif |
272 |
Kwz(i,j,k,bi,bj)=wc01_3D_Lx(i,j,k,bi,bj)*Kwz(i,j,k,bi,bj) |
273 |
Kux(i,j,k,bi,bj)=wc01_3D_Lx(i,j,k,bi,bj)*Kux(i,j,k,bi,bj) |
274 |
Kvy(i,j,k,bi,bj)=wc01_3D_Lx(i,j,k,bi,bj)*Kvy(i,j,k,bi,bj) |
275 |
ENDDO |
276 |
ENDDO |
277 |
ENDDO |
278 |
|
279 |
c begin: to restrain the Kz based on grid cells |
280 |
DO k=1,Nr |
281 |
DO j=1-OLy,sNy+OLy |
282 |
DO i=1-OLx,sNx+OLx |
283 |
|
284 |
wc01_3D_KzMax=drC(k) |
285 |
wc01_3D_KzMax=wc01_3D_KzMax*wc01_3D_KzMax/wc01_T/2 |
286 |
|
287 |
if (Kwz(i,j,k,bi,bj).GT.wc01_3D_KzMax) then |
288 |
Kwx(i,j,k,bi,bj)=Kwx(i,j,k,bi,bj) |
289 |
& *wc01_3D_KzMax/Kwz(i,j,k,bi,bj) |
290 |
Kwy(i,j,k,bi,bj)=Kwy(i,j,k,bi,bj) |
291 |
& *wc01_3D_KzMax/Kwz(i,j,k,bi,bj) |
292 |
Kuz(i,j,k,bi,bj)=Kuz(i,j,k,bi,bj) |
293 |
& *wc01_3D_KzMax/Kwz(i,j,k,bi,bj) |
294 |
Kvz(i,j,k,bi,bj)=Kvz(i,j,k,bi,bj) |
295 |
& *wc01_3D_KzMax/Kwz(i,j,k,bi,bj) |
296 |
Kux(i,j,k,bi,bj)=Kux(i,j,k,bi,bj) |
297 |
& *wc01_3D_KzMax/Kwz(i,j,k,bi,bj) |
298 |
Kvy(i,j,k,bi,bj)=Kvy(i,j,k,bi,bj) |
299 |
& *wc01_3D_KzMax/Kwz(i,j,k,bi,bj) |
300 |
Kwz(i,j,k,bi,bj)=Kwz(i,j,k,bi,bj) |
301 |
& *wc01_3D_KzMax/Kwz(i,j,k,bi,bj) |
302 |
endif |
303 |
ENDDO |
304 |
ENDDO |
305 |
ENDDO |
306 |
c end: to restrain the Kz based on grid cells |
307 |
|
308 |
|
309 |
CALL GMREDI_CALC_DIFF( |
310 |
I bi,bj,iMin,iMax,jMin,jMax,0,Nr, |
311 |
U KappaRwc01(1-OLx,1-OLy,1,bi,bj), |
312 |
I myThid) |
313 |
|
314 |
ENDDO |
315 |
ENDDO |
316 |
|
317 |
else |
318 |
|
319 |
c hoizontal operator: |
320 |
|
321 |
|
322 |
if ((smooth3DtypeH(smoothOpNbCur).NE.0).AND. |
323 |
& (smooth3DsizeH(smoothOpNbCur).EQ.3)) then |
324 |
write(fnamegeneric(1:80),'(1a,i3.3)') |
325 |
& 'wc01_3DscalesH',smoothOpNbCur |
326 |
call mdsreadfield(fnamegeneric,64,'RL',nR, |
327 |
& wc01_3D_Lx,1,mythid) |
328 |
call mdsreadfield(fnamegeneric,64,'RL',nR, |
329 |
& wc01_3D_Ly,2,mythid) |
330 |
_EXCH_XYZ_RL( wc01_3D_Lx, mythid ) |
331 |
_EXCH_XYZ_RL( wc01_3D_Ly, mythid ) |
332 |
else |
333 |
DO bj=jtlo,jthi |
334 |
DO bi=itlo,ithi |
335 |
DO k=1,Nr |
336 |
DO j=1-OLy,sNy+OLy |
337 |
DO i=1-OLx,sNx+OLx |
338 |
wc01_3D_Lx(i,j,k,bi,bj)=wc01_3D_Lx0(smoothOpNbCur) |
339 |
wc01_3D_Ly(i,j,k,bi,bj)=wc01_3D_Ly0(smoothOpNbCur) |
340 |
ENDDO |
341 |
ENDDO |
342 |
ENDDO |
343 |
ENDDO |
344 |
ENDDO |
345 |
endif |
346 |
|
347 |
if (smooth3DtypeH(smoothOpNbCur).NE.4) then |
348 |
c along model axes |
349 |
DO bj=jtlo,jthi |
350 |
DO bi=itlo,ithi |
351 |
DO k=1,Nr |
352 |
DO j=1-OLy,sNy+OLy |
353 |
DO i=1-OLx,sNx+OLx |
354 |
Kwx(i,j,k,bi,bj)=0. |
355 |
Kwy(i,j,k,bi,bj)=0. |
356 |
Kwz(i,j,k,bi,bj)=0. |
357 |
Kux(i,j,k,bi,bj)=wc01_3D_Lx(i,j,k,bi,bj)* |
358 |
& wc01_3D_Lx(i,j,k,bi,bj)/wc01_T/2 |
359 |
Kvy(i,j,k,bi,bj)=wc01_3D_Ly(i,j,k,bi,bj)* |
360 |
& wc01_3D_Ly(i,j,k,bi,bj)/wc01_T/2 |
361 |
Kuz(i,j,k,bi,bj)=0. |
362 |
Kvz(i,j,k,bi,bj)=0. |
363 |
ENDDO |
364 |
ENDDO |
365 |
ENDDO |
366 |
ENDDO |
367 |
ENDDO |
368 |
|
369 |
else |
370 |
|
371 |
c along rotated axes |
372 |
|
373 |
write(fnamegeneric(1:80),'(1a,i3.3)') |
374 |
& 'wc01_3DscalesH',smoothOpNbCur |
375 |
if (smooth3DsizeH(smoothOpNbCur).EQ.3) then |
376 |
call mdsreadfield(fnamegeneric,64,'RL',nR, |
377 |
& wc01theta,3,mythid) |
378 |
else |
379 |
call mdsreadfield(fnamegeneric,64,'RL',nR, |
380 |
& wc01theta,1,mythid) |
381 |
endif |
382 |
_EXCH_XYZ_RL( wc01theta, mythid ) |
383 |
|
384 |
iMin = 1-OLx |
385 |
iMax = sNx+OLx |
386 |
jMin = 1-OLy |
387 |
jMax = sNy+OLy |
388 |
|
389 |
write(fnamegeneric(1:80),'(1a)') 'wc01_3Dtest' |
390 |
|
391 |
c compute the gradients from the "direction" field |
392 |
DO bj=jtlo,jthi |
393 |
DO bi=itlo,ithi |
394 |
DO k=Nr,1,-1 |
395 |
CALL GRAD_SIGMA( |
396 |
& bi, bj, iMin, iMax, jMin, jMax, k, |
397 |
& wc01theta(1-OLx,1-OLy,k,bi,bj), |
398 |
& wc01theta(1-OLx,1-OLy,k,bi,bj), |
399 |
& wc01theta(1-OLx,1-OLy,k,bi,bj), |
400 |
& sigmaX(1-OLx,1-OLy,1,bi,bj), |
401 |
& sigmaY(1-OLx,1-OLy,1,bi,bj), |
402 |
& sigmaR(1-OLx,1-OLy,1,bi,bj), |
403 |
I myThid ) |
404 |
ENDDO |
405 |
ENDDO |
406 |
ENDDO |
407 |
_EXCH_XYZ_RL( sigmaX, myThid ) |
408 |
_EXCH_XYZ_RL( sigmaY, myThid ) |
409 |
_EXCH_XYZ_RL( sigmaR, myThid ) |
410 |
|
411 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
412 |
& nR,sigmaX,1,1,mythid) |
413 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
414 |
& nR,sigmaY,2,1,mythid) |
415 |
|
416 |
c available for the following computation: |
417 |
c rhok,rhokm1,rhokp1,wc01salt,sigmar |
418 |
|
419 |
c compute the associated cos and sin |
420 |
c rk1: Kwx is cos // Kwy is sin |
421 |
c rk2: 2 is used as a missing value |
422 |
DO bj=jtlo,jthi |
423 |
DO bi=itlo,ithi |
424 |
DO k=1,Nr |
425 |
DO j=1-OLy,sNy+OLy |
426 |
DO i=1-OLx,sNx+OLx |
427 |
rotate_s2=sigmaX(i,j,k,bi,bj)*sigmaX(i,j,k,bi,bj) |
428 |
& +sigmaY(i,j,k,bi,bj)*sigmaY(i,j,k,bi,bj) |
429 |
if ((rotate_s2.GT.0.).AND.(_maskS(i,j,k,bi,bj).NE.0.) |
430 |
& .AND.(_maskW(i,j,k,bi,bj).NE.0.) ) then |
431 |
Kwx(i,j,k,bi,bj)=sigmaY(i,j,k,bi,bj)/sqrt(rotate_s2) |
432 |
Kwy(i,j,k,bi,bj)=-sigmaX(i,j,k,bi,bj)/sqrt(rotate_s2) |
433 |
else |
434 |
Kwx(i,j,k,bi,bj)=2. |
435 |
Kwy(i,j,k,bi,bj)=2. |
436 |
endif |
437 |
ENDDO |
438 |
ENDDO |
439 |
ENDDO |
440 |
ENDDO |
441 |
ENDDO |
442 |
|
443 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
444 |
& nR,kwx,3,1,mythid) |
445 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
446 |
& nR,kwy,4,1,mythid) |
447 |
|
448 |
c compute a saturation coefficient: where the angle is changing (heterogeneous) |
449 |
c we will stay isotropic |
450 |
c rk1: Kwz is the angle // wc01salt is the saturation coeff |
451 |
c rk2: the computation uses atan to compute the angle, and has |
452 |
c to be done twice because atan is not continuous at pi/2 |
453 |
DO kk=1,2 |
454 |
|
455 |
c initialization |
456 |
DO bj=jtlo,jthi |
457 |
DO bi=itlo,ithi |
458 |
DO k=1,Nr |
459 |
DO j=1-OLy,sNy+OLy |
460 |
DO i=1-OLx,sNx+OLx |
461 |
Kwz(i,j,k,bi,bj)=999. |
462 |
if ((Kwx(i,j,k,bi,bj).NE.2.).AND. |
463 |
& (Kwx(i,j,k,bi,bj).NE.0.)) then |
464 |
Kwz(i,j,k,bi,bj)=atan(Kwy(i,j,k,bi,bj) |
465 |
& /Kwx(i,j,k,bi,bj)) |
466 |
elseif (Kwx(i,j,k,bi,bj).NE.2.) then |
467 |
Kwz(i,j,k,bi,bj)=sign(pi/2.,Kwy(i,j,k,bi,bj)) |
468 |
endif |
469 |
if (kk.EQ.1) then |
470 |
wc01salt(i,j,k,bi,bj)=999. |
471 |
endif |
472 |
c rk: it is important that the missing value is a (large) positive value |
473 |
if ((kk.EQ.2).AND.(Kwz(i,j,k,bi,bj).LT.0.)) then |
474 |
Kwz(i,j,k,bi,bj)=Kwz(i,j,k,bi,bj)+pi |
475 |
endif |
476 |
ENDDO |
477 |
ENDDO |
478 |
ENDDO |
479 |
ENDDO |
480 |
ENDDO |
481 |
|
482 |
c _EXCH_XYZ_RL( Kwz, myThid ) |
483 |
c _EXCH_XYZ_RL( wc01salt, myThid ) |
484 |
|
485 |
c the computation/update of the saturation coeff |
486 |
DO bj=jtlo,jthi |
487 |
DO bi=itlo,ithi |
488 |
DO k=1,Nr |
489 |
DO j=1,sNy |
490 |
DO i=1,sNx |
491 |
if (Kwz(i,j,k,bi,bj).NE.999.) then |
492 |
rotaTmp1=0. |
493 |
rotaTmp2=0. |
494 |
rotaTmp3=0. |
495 |
do ii=-1,1 |
496 |
do jj=-1,1 |
497 |
if (Kwz(i+ii,j+jj,k,bi,bj).NE.999.) then |
498 |
rotaTmp1=rotaTmp1+Kwz(i+ii,j+jj,k,bi,bj) |
499 |
rotaTmp2=rotaTmp2+Kwz(i+ii,j+jj,k,bi,bj)*Kwz(i+ii,j+jj,k,bi,bj) |
500 |
rotaTmp3=rotaTmp3+1. |
501 |
endif |
502 |
enddo |
503 |
enddo |
504 |
rotaTmp1=rotaTmp1/rotaTmp3 |
505 |
rotaTmp2=rotaTmp2/rotaTmp3 |
506 |
rotaTmp3=rotaTmp2-rotaTmp1*rotaTmp1 |
507 |
wc01salt(i,j,k,bi,bj)=min(wc01salt(i,j,k,bi,bj),rotaTmp3) |
508 |
if (kk.EQ.2) then |
509 |
rotaTmp3= (1 _d +00 - wc01salt(i,j,k,bi,bj)/(pi/2/6)) |
510 |
wc01salt(i,j,k,bi,bj)=max(0 _d +00 , rotaTmp3) |
511 |
endif |
512 |
endif |
513 |
ENDDO |
514 |
ENDDO |
515 |
ENDDO |
516 |
ENDDO |
517 |
ENDDO |
518 |
_EXCH_XYZ_RL( wc01salt, myThid ) |
519 |
ENDDO ! DO kk=1,2 |
520 |
|
521 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
522 |
& nR,wc01salt,5,1,mythid) |
523 |
|
524 |
c finally, compute the diffusion operator |
525 |
c rk: I will need to double-check the limit case (boundary) |
526 |
DO bj=jtlo,jthi |
527 |
DO bi=itlo,ithi |
528 |
DO k=1,Nr |
529 |
DO j=1-OLy,sNy+OLy |
530 |
DO i=1-OLx,sNx+OLx |
531 |
if (Kwz(i,j,k,bi,bj).NE.999.) then |
532 |
|
533 |
rotaTmp1=wc01_3D_Lx(i,j,k,bi,bj)* |
534 |
& wc01_3D_Lx(i,j,k,bi,bj)/wc01_T/2 |
535 |
rotaTmp2=wc01_3D_Ly(i,j,k,bi,bj)* |
536 |
& wc01_3D_Ly(i,j,k,bi,bj)/wc01_T/2 |
537 |
|
538 |
Kuxprime=rotaTmp1 |
539 |
Kvyprime=rotaTmp2*wc01salt(i,j,k,bi,bj) |
540 |
& + rotaTmp1*(1.-wc01salt(i,j,k,bi,bj)) |
541 |
|
542 |
Kux(i,j,k,bi,bj)=Kwx(i,j,k,bi,bj)*Kwx(i,j,k,bi,bj)*Kuxprime |
543 |
& +Kwy(i,j,k,bi,bj)*Kwy(i,j,k,bi,bj)*Kvyprime |
544 |
wc01_Kuy(i,j,k,bi,bj)=Kwx(i,j,k,bi,bj)*Kwy(i,j,k,bi,bj) |
545 |
& *(-Kuxprime+Kvyprime) |
546 |
Kvy(i,j,k,bi,bj)=Kwy(i,j,k,bi,bj)*Kwy(i,j,k,bi,bj)*Kuxprime |
547 |
& +Kwx(i,j,k,bi,bj)*Kwx(i,j,k,bi,bj)*Kvyprime |
548 |
wc01_Kvx(i,j,k,bi,bj)=Kwx(i,j,k,bi,bj)*Kwy(i,j,k,bi,bj) |
549 |
& *(-Kuxprime+Kvyprime) |
550 |
|
551 |
else |
552 |
|
553 |
rotaTmp1=wc01_3D_Lx(i,j,k,bi,bj)* |
554 |
& wc01_3D_Lx(i,j,k,bi,bj)/wc01_T/2 |
555 |
Kux(i,j,k,bi,bj)=rotaTmp1 |
556 |
wc01_Kuy(i,j,k,bi,bj)=0. |
557 |
Kvy(i,j,k,bi,bj)=rotaTmp1 |
558 |
wc01_Kvx(i,j,k,bi,bj)=0. |
559 |
|
560 |
endif |
561 |
|
562 |
Kwx(i,j,k,bi,bj)=0. |
563 |
Kwy(i,j,k,bi,bj)=0. |
564 |
Kwz(i,j,k,bi,bj)=0. |
565 |
Kuz(i,j,k,bi,bj)=0. |
566 |
Kvz(i,j,k,bi,bj)=0. |
567 |
ENDDO |
568 |
ENDDO |
569 |
ENDDO |
570 |
ENDDO |
571 |
ENDDO |
572 |
|
573 |
c OLD VERSION |
574 |
c Kuxprime=wc01_3D_Lx(i,j,k,bi,bj)* |
575 |
c & wc01_3D_Lx(i,j,k,bi,bj)/wc01_T/2 |
576 |
c Kvyprime=wc01_3D_Ly(i,j,k,bi,bj)* |
577 |
c & wc01_3D_Ly(i,j,k,bi,bj)/wc01_T/2 |
578 |
|
579 |
c rotate_cos=0.7071 |
580 |
c rotate_sin=0.7071 |
581 |
cc rotate_cos=0. |
582 |
cc rotate_sin=1. |
583 |
|
584 |
c Kux(i,j,k,bi,bj)=rotate_cos*Kuxprime |
585 |
c & -rotate_sin*Kvyprime |
586 |
c Kvy(i,j,k,bi,bj)=rotate_sin*Kuxprime |
587 |
c & +rotate_cos*Kvyprime |
588 |
|
589 |
c DO bj=jtlo,jthi |
590 |
c DO bi=itlo,ithi |
591 |
c DO k=1,Nr |
592 |
c DO j=1-OLy,sNy+OLy |
593 |
c DO i=1-OLx,sNx+OLx |
594 |
c Kux(i,j,k,bi,bj)=rotate_cos*rotate_cos*Kuxprime |
595 |
c & +rotate_sin*rotate_sin*Kvyprime |
596 |
c wc01_Kuy(i,j,k,bi,bj)=rotate_cos*rotate_sin |
597 |
c & *(-Kuxprime+Kvyprime) |
598 |
c Kvy(i,j,k,bi,bj)=rotate_sin*rotate_sin*Kuxprime |
599 |
c & +rotate_cos*rotate_cos*Kvyprime |
600 |
c wc01_Kvx(i,j,k,bi,bj)=rotate_cos*rotate_sin |
601 |
c & *(-Kuxprime+Kvyprime) |
602 |
c Kwx(i,j,k,bi,bj)=0. |
603 |
c Kwy(i,j,k,bi,bj)=0. |
604 |
c Kwz(i,j,k,bi,bj)=0. |
605 |
c Kuz(i,j,k,bi,bj)=0. |
606 |
c Kvz(i,j,k,bi,bj)=0. |
607 |
c ENDDO |
608 |
c ENDDO |
609 |
c ENDDO |
610 |
c ENDDO |
611 |
c ENDDO |
612 |
|
613 |
endif |
614 |
|
615 |
endif |
616 |
|
617 |
|
618 |
c finalize the set sup: |
619 |
|
620 |
_EXCH_XYZ_RL( kappaRwc01, myThid ) |
621 |
|
622 |
_EXCH_XYZ_RL( Kwx, myThid ) |
623 |
_EXCH_XYZ_RL( Kwy, myThid ) |
624 |
_EXCH_XYZ_RL( Kwz, myThid ) |
625 |
_EXCH_XYZ_RL( Kux, myThid ) |
626 |
_EXCH_XYZ_RL( Kvy, myThid ) |
627 |
_EXCH_XYZ_RL( Kuz, myThid ) |
628 |
_EXCH_XYZ_RL( Kvz, myThid ) |
629 |
|
630 |
DO bj=jtlo,jthi |
631 |
DO bi=itlo,ithi |
632 |
DO k=1,Nr |
633 |
DO j=1-OLy,sNy+OLy |
634 |
DO i=1-OLx,sNx+OLx |
635 |
wc01_Kwx(i,j,k,bi,bj)=Kwx(i,j,k,bi,bj) |
636 |
wc01_Kwy(i,j,k,bi,bj)=Kwy(i,j,k,bi,bj) |
637 |
wc01_Kwz(i,j,k,bi,bj)=Kwz(i,j,k,bi,bj) |
638 |
wc01_Kux(i,j,k,bi,bj)=Kux(i,j,k,bi,bj) |
639 |
wc01_Kvy(i,j,k,bi,bj)=Kvy(i,j,k,bi,bj) |
640 |
wc01_Kuz(i,j,k,bi,bj)=Kuz(i,j,k,bi,bj) |
641 |
wc01_Kvz(i,j,k,bi,bj)=Kvz(i,j,k,bi,bj) |
642 |
ENDDO |
643 |
ENDDO |
644 |
ENDDO |
645 |
ENDDO |
646 |
ENDDO |
647 |
|
648 |
c write the diffusion operator into file: |
649 |
|
650 |
write(fnamegeneric(1:80),'(1a,i3.3)') |
651 |
& 'wc01_3Doperator',smoothOpNbCur |
652 |
|
653 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
654 |
& nR,Kwx,1,1,mythid) |
655 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
656 |
& nR,Kwy,2,1,mythid) |
657 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
658 |
& nR,Kwz,3,1,mythid) |
659 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
660 |
& nR,Kux,4,1,mythid) |
661 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
662 |
& nR,Kvy,5,1,mythid) |
663 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
664 |
& nR,Kuz,6,1,mythid) |
665 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
666 |
& nR,Kvz,7,1,mythid) |
667 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
668 |
& nR,wc01_Kuy,8,1,mythid) |
669 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
670 |
& nR,wc01_Kvx,9,1,mythid) |
671 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
672 |
& nR,kappaRwc01,10,1,mythid) |
673 |
|
674 |
|
675 |
END |