| 1 |
#include "CPP_OPTIONS.h" |
| 2 |
#include "GMREDI_OPTIONS.h" |
| 3 |
|
| 4 |
subroutine smooth_init3D (mythid) |
| 5 |
|
| 6 |
|
| 7 |
IMPLICIT NONE |
| 8 |
#include "SIZE.h" |
| 9 |
#include "EEPARAMS.h" |
| 10 |
#include "PARAMS.h" |
| 11 |
#include "DYNVARS.h" |
| 12 |
#include "GRID.h" |
| 13 |
#include "GAD.h" |
| 14 |
c#include "tamc.h" |
| 15 |
#include "FFIELDS.h" |
| 16 |
#include "EOS.h" |
| 17 |
#include "GMREDI.h" |
| 18 |
#include "smooth.h" |
| 19 |
|
| 20 |
|
| 21 |
c input |
| 22 |
c bi, bj : array indices |
| 23 |
c k : vertical index used for masking |
| 24 |
integer i,j,k, bi, bj, imin, imax, jmin, jmax |
| 25 |
integer itlo,ithi |
| 26 |
integer jtlo,jthi |
| 27 |
integer myThid |
| 28 |
character*( 80) fnamegeneric |
| 29 |
|
| 30 |
_RL wc01theta (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
| 31 |
_RL wc01salt (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
| 32 |
_RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 33 |
_RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 34 |
_RL rhokp1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 35 |
_RL sigmaX (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
| 36 |
_RL sigmaY (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
| 37 |
_RL sigmaR (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
| 38 |
c parameter to restrain the Kz based on grid cells |
| 39 |
_RL wc01_3D_KzMax |
| 40 |
c to rotate the diffusion |
| 41 |
_RL Kuxprime, Kvyprime, rotate_s2,rotate_cos,rotate_sin |
| 42 |
_RL rotaTmp1,rotaTmp2,rotaTmp3 |
| 43 |
integer ii,jj,kk |
| 44 |
# ifndef GM_EXTRA_DIAGONAL |
| 45 |
_RL Kuz (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
| 46 |
_RL Kvz (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
| 47 |
# endif |
| 48 |
|
| 49 |
jtlo = mybylo(mythid) |
| 50 |
jthi = mybyhi(mythid) |
| 51 |
itlo = mybxlo(mythid) |
| 52 |
ithi = mybxhi(mythid) |
| 53 |
|
| 54 |
wc01_dt=1. |
| 55 |
wc01_T=wc01_nbt(smoothOpNbCur)*wc01_dt |
| 56 |
|
| 57 |
WRITE(standardMessageUnit,'(A,2I4,/,3f5.2)') |
| 58 |
& 'smooth 3D default parameters: ', |
| 59 |
& wc01_nbt(smoothOpNbCur),wc01_T, |
| 60 |
& wc01_3D_Lx0(smoothOpNbCur),wc01_3D_Ly0(smoothOpNbCur), |
| 61 |
& wc01_3D_Lz0(smoothOpNbCur) |
| 62 |
|
| 63 |
cgf "pour rotation H: sauver nouveaux champs" |
| 64 |
cgf "et poser une limite [deep interior -> isotropic]" |
| 65 |
cgf "... eviter les sauts de direction" |
| 66 |
|
| 67 |
c here fill the wc01_3D_Lz array |
| 68 |
if ((smooth3DtypeZ(smoothOpNbCur).NE.0).AND. |
| 69 |
& (smooth3DsizeZ(smoothOpNbCur).EQ.3)) then |
| 70 |
write(fnamegeneric(1:80),'(1a,i3.3)') |
| 71 |
& 'wc01_3DscalesZ',smoothOpNbCur |
| 72 |
call mdsreadfield(fnamegeneric,64,'RL',nR, |
| 73 |
& wc01_3D_Lz,1,mythid) |
| 74 |
_EXCH_XYZ_RL( wc01_3D_Lz, mythid ) |
| 75 |
else |
| 76 |
DO bj=jtlo,jthi |
| 77 |
DO bi=itlo,ithi |
| 78 |
DO k=1,Nr |
| 79 |
DO j=1-OLy,sNy+OLy |
| 80 |
DO i=1-OLx,sNx+OLx |
| 81 |
wc01_3D_Lz(i,j,k,bi,bj)=wc01_3D_Lz0(smoothOpNbCur) |
| 82 |
ENDDO |
| 83 |
ENDDO |
| 84 |
ENDDO |
| 85 |
ENDDO |
| 86 |
ENDDO |
| 87 |
endif |
| 88 |
|
| 89 |
|
| 90 |
c vertical diffusion |
| 91 |
DO bj=jtlo,jthi |
| 92 |
DO bi=itlo,ithi |
| 93 |
DO k=1,Nr |
| 94 |
DO j=1-OLy,sNy+OLy |
| 95 |
DO i=1-OLx,sNx+OLx |
| 96 |
kappaRwc01(i,j,k,bi,bj)=wc01_3D_Lz(i,j,k,bi,bj)* |
| 97 |
& wc01_3D_Lz(i,j,k,bi,bj)/wc01_T/2 |
| 98 |
ENDDO |
| 99 |
ENDDO |
| 100 |
ENDDO |
| 101 |
ENDDO |
| 102 |
ENDDO |
| 103 |
|
| 104 |
c begin: to restrain the Kz based on grid cells |
| 105 |
if (smooth3DsizeZ(smoothOpNbCur).NE.3) then |
| 106 |
DO bj=jtlo,jthi |
| 107 |
DO bi=itlo,ithi |
| 108 |
DO k=1,Nr |
| 109 |
DO j=1-OLy,sNy+OLy |
| 110 |
DO i=1-OLx,sNx+OLx |
| 111 |
|
| 112 |
wc01_3D_KzMax=drC(k) |
| 113 |
wc01_3D_KzMax=wc01_3D_KzMax*wc01_3D_KzMax/wc01_T/2 |
| 114 |
if (kappaRwc01(i,j,k,bi,bj).GT.wc01_3D_KzMax) then |
| 115 |
kappaRwc01(i,j,k,bi,bj)=wc01_3D_KzMax |
| 116 |
endif |
| 117 |
ENDDO |
| 118 |
ENDDO |
| 119 |
ENDDO |
| 120 |
ENDDO |
| 121 |
ENDDO |
| 122 |
endif |
| 123 |
c end: to restrain the Kz based on grid cells |
| 124 |
|
| 125 |
_EXCH_XYZ_RL( kappaRwc01, myThid ) |
| 126 |
|
| 127 |
c horizontal/isopycnal operator: |
| 128 |
|
| 129 |
DO bj=jtlo,jthi |
| 130 |
DO bi=itlo,ithi |
| 131 |
DO k=1,Nr |
| 132 |
DO j=1-OLy,sNy+OLy |
| 133 |
DO i=1-OLx,sNx+OLx |
| 134 |
wc01_Kuy(i,j,k,bi,bj)=0. |
| 135 |
wc01_Kvx(i,j,k,bi,bj)=0. |
| 136 |
ENDDO |
| 137 |
ENDDO |
| 138 |
ENDDO |
| 139 |
ENDDO |
| 140 |
ENDDO |
| 141 |
|
| 142 |
|
| 143 |
if ((smooth3DtypeH(smoothOpNbCur).EQ.2).OR. |
| 144 |
& (smooth3DtypeH(smoothOpNbCur).EQ.3)) then |
| 145 |
|
| 146 |
c isopycnal operator: |
| 147 |
|
| 148 |
write(fnamegeneric(1:80),'(1a,i3.3)') |
| 149 |
& 'wc01_3DscalesH',smoothOpNbCur |
| 150 |
|
| 151 |
call mdsreadfield(fnamegeneric,64,'RL',nR, |
| 152 |
& wc01theta,1,mythid) |
| 153 |
call mdsreadfield(fnamegeneric,64,'RL',nR, |
| 154 |
& wc01salt,2,mythid) |
| 155 |
_EXCH_XYZ_RL( wc01theta, mythid ) |
| 156 |
_EXCH_XYZ_RL( wc01salt, mythid ) |
| 157 |
|
| 158 |
if (smooth3DsizeH(smoothOpNbCur).EQ.3) then |
| 159 |
call mdsreadfield(fnamegeneric,64,'RL',nR, |
| 160 |
& wc01_3D_Lx,3,mythid) |
| 161 |
_EXCH_XYZ_RL( wc01_3D_Lx, mythid ) |
| 162 |
else |
| 163 |
DO bj=jtlo,jthi |
| 164 |
DO bi=itlo,ithi |
| 165 |
DO k=1,Nr |
| 166 |
DO j=1-OLy,sNy+OLy |
| 167 |
DO i=1-OLx,sNx+OLx |
| 168 |
wc01_3D_Lx(i,j,k,bi,bj)=wc01_3D_Lx0(smoothOpNbCur) |
| 169 |
ENDDO |
| 170 |
ENDDO |
| 171 |
ENDDO |
| 172 |
ENDDO |
| 173 |
ENDDO |
| 174 |
endif |
| 175 |
|
| 176 |
DO bj=jtlo,jthi |
| 177 |
DO bi=itlo,ithi |
| 178 |
DO k=1,Nr |
| 179 |
DO j=1-OLy,sNy+OLy |
| 180 |
DO i=1-OLx,sNx+OLx |
| 181 |
c here wc01_3D_Lx contains K divided by Kgmredi(=1000) |
| 182 |
wc01_3D_Lx(i,j,k,bi,bj)=wc01_3D_Lx(i,j,k,bi,bj)* |
| 183 |
& wc01_3D_Lx(i,j,k,bi,bj)/wc01_T/2 /1000 |
| 184 |
ENDDO |
| 185 |
ENDDO |
| 186 |
ENDDO |
| 187 |
ENDDO |
| 188 |
ENDDO |
| 189 |
|
| 190 |
_EXCH_XYZ_RL( wc01_3D_Lx, mythid ) |
| 191 |
|
| 192 |
iMin = 1-OLx |
| 193 |
iMax = sNx+OLx |
| 194 |
jMin = 1-OLy |
| 195 |
jMax = sNy+OLy |
| 196 |
|
| 197 |
DO bj=jtlo,jthi |
| 198 |
DO bi=itlo,ithi |
| 199 |
DO k=Nr,1,-1 |
| 200 |
CALL FIND_RHO_2D( |
| 201 |
I iMin, iMax, jMin, jMax, k, |
| 202 |
I wc01theta(1-OLx,1-OLy,k,bi,bj), |
| 203 |
I wc01salt(1-OLx,1-OLy,k,bi,bj), |
| 204 |
O rhoK(1-OLx,1-OLy,bi,bj), |
| 205 |
I k, bi, bj, myThid ) |
| 206 |
IF (k.GT.1) THEN |
| 207 |
CALL FIND_RHO_2D( |
| 208 |
I iMin, iMax, jMin, jMax, k, |
| 209 |
I wc01theta(1-OLx,1-OLy,k-1,bi,bj), |
| 210 |
I wc01salt(1-OLx,1-OLy,k-1,bi,bj), |
| 211 |
O rhoKm1(1-OLx,1-OLy,bi,bj), |
| 212 |
I k-1, bi, bj, myThid ) |
| 213 |
ELSE |
| 214 |
DO j=1-OLy,sNy+OLy |
| 215 |
DO i=1-OLx,sNx+OLx |
| 216 |
rhoKm1(i,j,bi,bj)=rhoK(i,j,bi,bj) |
| 217 |
ENDDO |
| 218 |
ENDDO |
| 219 |
ENDIF |
| 220 |
DO j=1-OLy,sNy+OLy |
| 221 |
DO i=1-OLx,sNx+OLx |
| 222 |
rhoKp1(i,j,bi,bj)=rhoK(i,j,bi,bj) |
| 223 |
ENDDO |
| 224 |
ENDDO |
| 225 |
cgf rk: GRAD_SIGMA ne calcule la derivee verticale au point w, entre Km1 et K |
| 226 |
CALL GRAD_SIGMA( |
| 227 |
& bi, bj, iMin, iMax, jMin, jMax, k, |
| 228 |
& rhoK(1-OLx,1-OLy,bi,bj), |
| 229 |
& rhoKm1(1-OLx,1-OLy,bi,bj), |
| 230 |
& rhoKp1(1-OLx,1-OLy,bi,bj), |
| 231 |
& sigmaX(1-OLx,1-OLy,1,bi,bj), |
| 232 |
& sigmaY(1-OLx,1-OLy,1,bi,bj), |
| 233 |
& sigmaR(1-OLx,1-OLy,1,bi,bj), |
| 234 |
I myThid ) |
| 235 |
ENDDO |
| 236 |
ENDDO |
| 237 |
ENDDO |
| 238 |
|
| 239 |
_EXCH_XYZ_RL( sigmaX, myThid ) |
| 240 |
_EXCH_XYZ_RL( sigmaY, myThid ) |
| 241 |
_EXCH_XYZ_RL( sigmaR, myThid ) |
| 242 |
|
| 243 |
DO bj=jtlo,jthi |
| 244 |
DO bi=itlo,ithi |
| 245 |
|
| 246 |
CALL GMREDI_CALC_TENSOR( |
| 247 |
I bi, bj, iMin, iMax, jMin, jMax, |
| 248 |
I sigmaX(1-OLx,1-OLy,1,bi,bj), |
| 249 |
& sigmaY(1-OLx,1-OLy,1,bi,bj), |
| 250 |
& sigmaR(1-OLx,1-OLy,1,bi,bj), |
| 251 |
I myThid ) |
| 252 |
|
| 253 |
DO k=1,Nr |
| 254 |
DO j=1-OLy,sNy+OLy |
| 255 |
DO i=1-OLx,sNx+OLx |
| 256 |
if (smooth3DtypeH(smoothOpNbCur).EQ.2) then |
| 257 |
Kwx(i,j,k,bi,bj)=wc01_3D_Lx(i,j,k,bi,bj)*Kwx(i,j,k,bi,bj) |
| 258 |
Kwy(i,j,k,bi,bj)=wc01_3D_Lx(i,j,k,bi,bj)*Kwy(i,j,k,bi,bj) |
| 259 |
# ifdef GM_EXTRA_DIAGONAL |
| 260 |
Kuz(i,j,k,bi,bj)=wc01_3D_Lx(i,j,k,bi,bj)*Kuz(i,j,k,bi,bj) |
| 261 |
Kvz(i,j,k,bi,bj)=wc01_3D_Lx(i,j,k,bi,bj)*Kvz(i,j,k,bi,bj) |
| 262 |
# else |
| 263 |
Kuz(i,j,k,bi,bj)=0. |
| 264 |
Kvz(i,j,k,bi,bj)=0. |
| 265 |
# endif |
| 266 |
else |
| 267 |
Kwx(i,j,k,bi,bj)=2*wc01_3D_Lx(i,j,k,bi,bj)*Kwx(i,j,k,bi,bj) |
| 268 |
Kwy(i,j,k,bi,bj)=2*wc01_3D_Lx(i,j,k,bi,bj)*Kwy(i,j,k,bi,bj) |
| 269 |
Kuz(i,j,k,bi,bj)=0. |
| 270 |
Kvz(i,j,k,bi,bj)=0. |
| 271 |
endif |
| 272 |
Kwz(i,j,k,bi,bj)=wc01_3D_Lx(i,j,k,bi,bj)*Kwz(i,j,k,bi,bj) |
| 273 |
Kux(i,j,k,bi,bj)=wc01_3D_Lx(i,j,k,bi,bj)*Kux(i,j,k,bi,bj) |
| 274 |
Kvy(i,j,k,bi,bj)=wc01_3D_Lx(i,j,k,bi,bj)*Kvy(i,j,k,bi,bj) |
| 275 |
ENDDO |
| 276 |
ENDDO |
| 277 |
ENDDO |
| 278 |
|
| 279 |
c begin: to restrain the Kz based on grid cells |
| 280 |
DO k=1,Nr |
| 281 |
DO j=1-OLy,sNy+OLy |
| 282 |
DO i=1-OLx,sNx+OLx |
| 283 |
|
| 284 |
wc01_3D_KzMax=drC(k) |
| 285 |
wc01_3D_KzMax=wc01_3D_KzMax*wc01_3D_KzMax/wc01_T/2 |
| 286 |
|
| 287 |
if (Kwz(i,j,k,bi,bj).GT.wc01_3D_KzMax) then |
| 288 |
Kwx(i,j,k,bi,bj)=Kwx(i,j,k,bi,bj) |
| 289 |
& *wc01_3D_KzMax/Kwz(i,j,k,bi,bj) |
| 290 |
Kwy(i,j,k,bi,bj)=Kwy(i,j,k,bi,bj) |
| 291 |
& *wc01_3D_KzMax/Kwz(i,j,k,bi,bj) |
| 292 |
Kuz(i,j,k,bi,bj)=Kuz(i,j,k,bi,bj) |
| 293 |
& *wc01_3D_KzMax/Kwz(i,j,k,bi,bj) |
| 294 |
Kvz(i,j,k,bi,bj)=Kvz(i,j,k,bi,bj) |
| 295 |
& *wc01_3D_KzMax/Kwz(i,j,k,bi,bj) |
| 296 |
Kux(i,j,k,bi,bj)=Kux(i,j,k,bi,bj) |
| 297 |
& *wc01_3D_KzMax/Kwz(i,j,k,bi,bj) |
| 298 |
Kvy(i,j,k,bi,bj)=Kvy(i,j,k,bi,bj) |
| 299 |
& *wc01_3D_KzMax/Kwz(i,j,k,bi,bj) |
| 300 |
Kwz(i,j,k,bi,bj)=Kwz(i,j,k,bi,bj) |
| 301 |
& *wc01_3D_KzMax/Kwz(i,j,k,bi,bj) |
| 302 |
endif |
| 303 |
ENDDO |
| 304 |
ENDDO |
| 305 |
ENDDO |
| 306 |
c end: to restrain the Kz based on grid cells |
| 307 |
|
| 308 |
|
| 309 |
CALL GMREDI_CALC_DIFF( |
| 310 |
I bi,bj,iMin,iMax,jMin,jMax,0,Nr, |
| 311 |
U KappaRwc01(1-OLx,1-OLy,1,bi,bj), |
| 312 |
I myThid) |
| 313 |
|
| 314 |
ENDDO |
| 315 |
ENDDO |
| 316 |
|
| 317 |
else |
| 318 |
|
| 319 |
c hoizontal operator: |
| 320 |
|
| 321 |
|
| 322 |
if ((smooth3DtypeH(smoothOpNbCur).NE.0).AND. |
| 323 |
& (smooth3DsizeH(smoothOpNbCur).EQ.3)) then |
| 324 |
write(fnamegeneric(1:80),'(1a,i3.3)') |
| 325 |
& 'wc01_3DscalesH',smoothOpNbCur |
| 326 |
call mdsreadfield(fnamegeneric,64,'RL',nR, |
| 327 |
& wc01_3D_Lx,1,mythid) |
| 328 |
call mdsreadfield(fnamegeneric,64,'RL',nR, |
| 329 |
& wc01_3D_Ly,2,mythid) |
| 330 |
_EXCH_XYZ_RL( wc01_3D_Lx, mythid ) |
| 331 |
_EXCH_XYZ_RL( wc01_3D_Ly, mythid ) |
| 332 |
else |
| 333 |
DO bj=jtlo,jthi |
| 334 |
DO bi=itlo,ithi |
| 335 |
DO k=1,Nr |
| 336 |
DO j=1-OLy,sNy+OLy |
| 337 |
DO i=1-OLx,sNx+OLx |
| 338 |
wc01_3D_Lx(i,j,k,bi,bj)=wc01_3D_Lx0(smoothOpNbCur) |
| 339 |
wc01_3D_Ly(i,j,k,bi,bj)=wc01_3D_Ly0(smoothOpNbCur) |
| 340 |
ENDDO |
| 341 |
ENDDO |
| 342 |
ENDDO |
| 343 |
ENDDO |
| 344 |
ENDDO |
| 345 |
endif |
| 346 |
|
| 347 |
if (smooth3DtypeH(smoothOpNbCur).NE.4) then |
| 348 |
c along model axes |
| 349 |
DO bj=jtlo,jthi |
| 350 |
DO bi=itlo,ithi |
| 351 |
DO k=1,Nr |
| 352 |
DO j=1-OLy,sNy+OLy |
| 353 |
DO i=1-OLx,sNx+OLx |
| 354 |
Kwx(i,j,k,bi,bj)=0. |
| 355 |
Kwy(i,j,k,bi,bj)=0. |
| 356 |
Kwz(i,j,k,bi,bj)=0. |
| 357 |
Kux(i,j,k,bi,bj)=wc01_3D_Lx(i,j,k,bi,bj)* |
| 358 |
& wc01_3D_Lx(i,j,k,bi,bj)/wc01_T/2 |
| 359 |
Kvy(i,j,k,bi,bj)=wc01_3D_Ly(i,j,k,bi,bj)* |
| 360 |
& wc01_3D_Ly(i,j,k,bi,bj)/wc01_T/2 |
| 361 |
Kuz(i,j,k,bi,bj)=0. |
| 362 |
Kvz(i,j,k,bi,bj)=0. |
| 363 |
ENDDO |
| 364 |
ENDDO |
| 365 |
ENDDO |
| 366 |
ENDDO |
| 367 |
ENDDO |
| 368 |
|
| 369 |
else |
| 370 |
|
| 371 |
c along rotated axes |
| 372 |
|
| 373 |
write(fnamegeneric(1:80),'(1a,i3.3)') |
| 374 |
& 'wc01_3DscalesH',smoothOpNbCur |
| 375 |
if (smooth3DsizeH(smoothOpNbCur).EQ.3) then |
| 376 |
call mdsreadfield(fnamegeneric,64,'RL',nR, |
| 377 |
& wc01theta,3,mythid) |
| 378 |
else |
| 379 |
call mdsreadfield(fnamegeneric,64,'RL',nR, |
| 380 |
& wc01theta,1,mythid) |
| 381 |
endif |
| 382 |
_EXCH_XYZ_RL( wc01theta, mythid ) |
| 383 |
|
| 384 |
iMin = 1-OLx |
| 385 |
iMax = sNx+OLx |
| 386 |
jMin = 1-OLy |
| 387 |
jMax = sNy+OLy |
| 388 |
|
| 389 |
write(fnamegeneric(1:80),'(1a)') 'wc01_3Dtest' |
| 390 |
|
| 391 |
c compute the gradients from the "direction" field |
| 392 |
DO bj=jtlo,jthi |
| 393 |
DO bi=itlo,ithi |
| 394 |
DO k=Nr,1,-1 |
| 395 |
CALL GRAD_SIGMA( |
| 396 |
& bi, bj, iMin, iMax, jMin, jMax, k, |
| 397 |
& wc01theta(1-OLx,1-OLy,k,bi,bj), |
| 398 |
& wc01theta(1-OLx,1-OLy,k,bi,bj), |
| 399 |
& wc01theta(1-OLx,1-OLy,k,bi,bj), |
| 400 |
& sigmaX(1-OLx,1-OLy,1,bi,bj), |
| 401 |
& sigmaY(1-OLx,1-OLy,1,bi,bj), |
| 402 |
& sigmaR(1-OLx,1-OLy,1,bi,bj), |
| 403 |
I myThid ) |
| 404 |
ENDDO |
| 405 |
ENDDO |
| 406 |
ENDDO |
| 407 |
_EXCH_XYZ_RL( sigmaX, myThid ) |
| 408 |
_EXCH_XYZ_RL( sigmaY, myThid ) |
| 409 |
_EXCH_XYZ_RL( sigmaR, myThid ) |
| 410 |
|
| 411 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
| 412 |
& nR,sigmaX,1,1,mythid) |
| 413 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
| 414 |
& nR,sigmaY,2,1,mythid) |
| 415 |
|
| 416 |
c available for the following computation: |
| 417 |
c rhok,rhokm1,rhokp1,wc01salt,sigmar |
| 418 |
|
| 419 |
c compute the associated cos and sin |
| 420 |
c rk1: Kwx is cos // Kwy is sin |
| 421 |
c rk2: 2 is used as a missing value |
| 422 |
DO bj=jtlo,jthi |
| 423 |
DO bi=itlo,ithi |
| 424 |
DO k=1,Nr |
| 425 |
DO j=1-OLy,sNy+OLy |
| 426 |
DO i=1-OLx,sNx+OLx |
| 427 |
rotate_s2=sigmaX(i,j,k,bi,bj)*sigmaX(i,j,k,bi,bj) |
| 428 |
& +sigmaY(i,j,k,bi,bj)*sigmaY(i,j,k,bi,bj) |
| 429 |
if ((rotate_s2.GT.0.).AND.(_maskS(i,j,k,bi,bj).NE.0.) |
| 430 |
& .AND.(_maskW(i,j,k,bi,bj).NE.0.) ) then |
| 431 |
Kwx(i,j,k,bi,bj)=sigmaY(i,j,k,bi,bj)/sqrt(rotate_s2) |
| 432 |
Kwy(i,j,k,bi,bj)=-sigmaX(i,j,k,bi,bj)/sqrt(rotate_s2) |
| 433 |
else |
| 434 |
Kwx(i,j,k,bi,bj)=2. |
| 435 |
Kwy(i,j,k,bi,bj)=2. |
| 436 |
endif |
| 437 |
ENDDO |
| 438 |
ENDDO |
| 439 |
ENDDO |
| 440 |
ENDDO |
| 441 |
ENDDO |
| 442 |
|
| 443 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
| 444 |
& nR,kwx,3,1,mythid) |
| 445 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
| 446 |
& nR,kwy,4,1,mythid) |
| 447 |
|
| 448 |
c compute a saturation coefficient: where the angle is changing (heterogeneous) |
| 449 |
c we will stay isotropic |
| 450 |
c rk1: Kwz is the angle // wc01salt is the saturation coeff |
| 451 |
c rk2: the computation uses atan to compute the angle, and has |
| 452 |
c to be done twice because atan is not continuous at pi/2 |
| 453 |
DO kk=1,2 |
| 454 |
|
| 455 |
c initialization |
| 456 |
DO bj=jtlo,jthi |
| 457 |
DO bi=itlo,ithi |
| 458 |
DO k=1,Nr |
| 459 |
DO j=1-OLy,sNy+OLy |
| 460 |
DO i=1-OLx,sNx+OLx |
| 461 |
Kwz(i,j,k,bi,bj)=999. |
| 462 |
if ((Kwx(i,j,k,bi,bj).NE.2.).AND. |
| 463 |
& (Kwx(i,j,k,bi,bj).NE.0.)) then |
| 464 |
Kwz(i,j,k,bi,bj)=atan(Kwy(i,j,k,bi,bj) |
| 465 |
& /Kwx(i,j,k,bi,bj)) |
| 466 |
elseif (Kwx(i,j,k,bi,bj).NE.2.) then |
| 467 |
Kwz(i,j,k,bi,bj)=sign(pi/2.,Kwy(i,j,k,bi,bj)) |
| 468 |
endif |
| 469 |
if (kk.EQ.1) then |
| 470 |
wc01salt(i,j,k,bi,bj)=999. |
| 471 |
endif |
| 472 |
c rk: it is important that the missing value is a (large) positive value |
| 473 |
if ((kk.EQ.2).AND.(Kwz(i,j,k,bi,bj).LT.0.)) then |
| 474 |
Kwz(i,j,k,bi,bj)=Kwz(i,j,k,bi,bj)+pi |
| 475 |
endif |
| 476 |
ENDDO |
| 477 |
ENDDO |
| 478 |
ENDDO |
| 479 |
ENDDO |
| 480 |
ENDDO |
| 481 |
|
| 482 |
c _EXCH_XYZ_RL( Kwz, myThid ) |
| 483 |
c _EXCH_XYZ_RL( wc01salt, myThid ) |
| 484 |
|
| 485 |
c the computation/update of the saturation coeff |
| 486 |
DO bj=jtlo,jthi |
| 487 |
DO bi=itlo,ithi |
| 488 |
DO k=1,Nr |
| 489 |
DO j=1,sNy |
| 490 |
DO i=1,sNx |
| 491 |
if (Kwz(i,j,k,bi,bj).NE.999.) then |
| 492 |
rotaTmp1=0. |
| 493 |
rotaTmp2=0. |
| 494 |
rotaTmp3=0. |
| 495 |
do ii=-1,1 |
| 496 |
do jj=-1,1 |
| 497 |
if (Kwz(i+ii,j+jj,k,bi,bj).NE.999.) then |
| 498 |
rotaTmp1=rotaTmp1+Kwz(i+ii,j+jj,k,bi,bj) |
| 499 |
rotaTmp2=rotaTmp2+Kwz(i+ii,j+jj,k,bi,bj)*Kwz(i+ii,j+jj,k,bi,bj) |
| 500 |
rotaTmp3=rotaTmp3+1. |
| 501 |
endif |
| 502 |
enddo |
| 503 |
enddo |
| 504 |
rotaTmp1=rotaTmp1/rotaTmp3 |
| 505 |
rotaTmp2=rotaTmp2/rotaTmp3 |
| 506 |
rotaTmp3=rotaTmp2-rotaTmp1*rotaTmp1 |
| 507 |
wc01salt(i,j,k,bi,bj)=min(wc01salt(i,j,k,bi,bj),rotaTmp3) |
| 508 |
if (kk.EQ.2) then |
| 509 |
rotaTmp3= (1 _d +00 - wc01salt(i,j,k,bi,bj)/(pi/2/6)) |
| 510 |
wc01salt(i,j,k,bi,bj)=max(0 _d +00 , rotaTmp3) |
| 511 |
endif |
| 512 |
endif |
| 513 |
ENDDO |
| 514 |
ENDDO |
| 515 |
ENDDO |
| 516 |
ENDDO |
| 517 |
ENDDO |
| 518 |
_EXCH_XYZ_RL( wc01salt, myThid ) |
| 519 |
ENDDO ! DO kk=1,2 |
| 520 |
|
| 521 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
| 522 |
& nR,wc01salt,5,1,mythid) |
| 523 |
|
| 524 |
c finally, compute the diffusion operator |
| 525 |
c rk: I will need to double-check the limit case (boundary) |
| 526 |
DO bj=jtlo,jthi |
| 527 |
DO bi=itlo,ithi |
| 528 |
DO k=1,Nr |
| 529 |
DO j=1-OLy,sNy+OLy |
| 530 |
DO i=1-OLx,sNx+OLx |
| 531 |
if (Kwz(i,j,k,bi,bj).NE.999.) then |
| 532 |
|
| 533 |
rotaTmp1=wc01_3D_Lx(i,j,k,bi,bj)* |
| 534 |
& wc01_3D_Lx(i,j,k,bi,bj)/wc01_T/2 |
| 535 |
rotaTmp2=wc01_3D_Ly(i,j,k,bi,bj)* |
| 536 |
& wc01_3D_Ly(i,j,k,bi,bj)/wc01_T/2 |
| 537 |
|
| 538 |
Kuxprime=rotaTmp1 |
| 539 |
Kvyprime=rotaTmp2*wc01salt(i,j,k,bi,bj) |
| 540 |
& + rotaTmp1*(1.-wc01salt(i,j,k,bi,bj)) |
| 541 |
|
| 542 |
Kux(i,j,k,bi,bj)=Kwx(i,j,k,bi,bj)*Kwx(i,j,k,bi,bj)*Kuxprime |
| 543 |
& +Kwy(i,j,k,bi,bj)*Kwy(i,j,k,bi,bj)*Kvyprime |
| 544 |
wc01_Kuy(i,j,k,bi,bj)=Kwx(i,j,k,bi,bj)*Kwy(i,j,k,bi,bj) |
| 545 |
& *(-Kuxprime+Kvyprime) |
| 546 |
Kvy(i,j,k,bi,bj)=Kwy(i,j,k,bi,bj)*Kwy(i,j,k,bi,bj)*Kuxprime |
| 547 |
& +Kwx(i,j,k,bi,bj)*Kwx(i,j,k,bi,bj)*Kvyprime |
| 548 |
wc01_Kvx(i,j,k,bi,bj)=Kwx(i,j,k,bi,bj)*Kwy(i,j,k,bi,bj) |
| 549 |
& *(-Kuxprime+Kvyprime) |
| 550 |
|
| 551 |
else |
| 552 |
|
| 553 |
rotaTmp1=wc01_3D_Lx(i,j,k,bi,bj)* |
| 554 |
& wc01_3D_Lx(i,j,k,bi,bj)/wc01_T/2 |
| 555 |
Kux(i,j,k,bi,bj)=rotaTmp1 |
| 556 |
wc01_Kuy(i,j,k,bi,bj)=0. |
| 557 |
Kvy(i,j,k,bi,bj)=rotaTmp1 |
| 558 |
wc01_Kvx(i,j,k,bi,bj)=0. |
| 559 |
|
| 560 |
endif |
| 561 |
|
| 562 |
Kwx(i,j,k,bi,bj)=0. |
| 563 |
Kwy(i,j,k,bi,bj)=0. |
| 564 |
Kwz(i,j,k,bi,bj)=0. |
| 565 |
Kuz(i,j,k,bi,bj)=0. |
| 566 |
Kvz(i,j,k,bi,bj)=0. |
| 567 |
ENDDO |
| 568 |
ENDDO |
| 569 |
ENDDO |
| 570 |
ENDDO |
| 571 |
ENDDO |
| 572 |
|
| 573 |
c OLD VERSION |
| 574 |
c Kuxprime=wc01_3D_Lx(i,j,k,bi,bj)* |
| 575 |
c & wc01_3D_Lx(i,j,k,bi,bj)/wc01_T/2 |
| 576 |
c Kvyprime=wc01_3D_Ly(i,j,k,bi,bj)* |
| 577 |
c & wc01_3D_Ly(i,j,k,bi,bj)/wc01_T/2 |
| 578 |
|
| 579 |
c rotate_cos=0.7071 |
| 580 |
c rotate_sin=0.7071 |
| 581 |
cc rotate_cos=0. |
| 582 |
cc rotate_sin=1. |
| 583 |
|
| 584 |
c Kux(i,j,k,bi,bj)=rotate_cos*Kuxprime |
| 585 |
c & -rotate_sin*Kvyprime |
| 586 |
c Kvy(i,j,k,bi,bj)=rotate_sin*Kuxprime |
| 587 |
c & +rotate_cos*Kvyprime |
| 588 |
|
| 589 |
c DO bj=jtlo,jthi |
| 590 |
c DO bi=itlo,ithi |
| 591 |
c DO k=1,Nr |
| 592 |
c DO j=1-OLy,sNy+OLy |
| 593 |
c DO i=1-OLx,sNx+OLx |
| 594 |
c Kux(i,j,k,bi,bj)=rotate_cos*rotate_cos*Kuxprime |
| 595 |
c & +rotate_sin*rotate_sin*Kvyprime |
| 596 |
c wc01_Kuy(i,j,k,bi,bj)=rotate_cos*rotate_sin |
| 597 |
c & *(-Kuxprime+Kvyprime) |
| 598 |
c Kvy(i,j,k,bi,bj)=rotate_sin*rotate_sin*Kuxprime |
| 599 |
c & +rotate_cos*rotate_cos*Kvyprime |
| 600 |
c wc01_Kvx(i,j,k,bi,bj)=rotate_cos*rotate_sin |
| 601 |
c & *(-Kuxprime+Kvyprime) |
| 602 |
c Kwx(i,j,k,bi,bj)=0. |
| 603 |
c Kwy(i,j,k,bi,bj)=0. |
| 604 |
c Kwz(i,j,k,bi,bj)=0. |
| 605 |
c Kuz(i,j,k,bi,bj)=0. |
| 606 |
c Kvz(i,j,k,bi,bj)=0. |
| 607 |
c ENDDO |
| 608 |
c ENDDO |
| 609 |
c ENDDO |
| 610 |
c ENDDO |
| 611 |
c ENDDO |
| 612 |
|
| 613 |
endif |
| 614 |
|
| 615 |
endif |
| 616 |
|
| 617 |
|
| 618 |
c finalize the set sup: |
| 619 |
|
| 620 |
_EXCH_XYZ_RL( kappaRwc01, myThid ) |
| 621 |
|
| 622 |
_EXCH_XYZ_RL( Kwx, myThid ) |
| 623 |
_EXCH_XYZ_RL( Kwy, myThid ) |
| 624 |
_EXCH_XYZ_RL( Kwz, myThid ) |
| 625 |
_EXCH_XYZ_RL( Kux, myThid ) |
| 626 |
_EXCH_XYZ_RL( Kvy, myThid ) |
| 627 |
_EXCH_XYZ_RL( Kuz, myThid ) |
| 628 |
_EXCH_XYZ_RL( Kvz, myThid ) |
| 629 |
|
| 630 |
DO bj=jtlo,jthi |
| 631 |
DO bi=itlo,ithi |
| 632 |
DO k=1,Nr |
| 633 |
DO j=1-OLy,sNy+OLy |
| 634 |
DO i=1-OLx,sNx+OLx |
| 635 |
wc01_Kwx(i,j,k,bi,bj)=Kwx(i,j,k,bi,bj) |
| 636 |
wc01_Kwy(i,j,k,bi,bj)=Kwy(i,j,k,bi,bj) |
| 637 |
wc01_Kwz(i,j,k,bi,bj)=Kwz(i,j,k,bi,bj) |
| 638 |
wc01_Kux(i,j,k,bi,bj)=Kux(i,j,k,bi,bj) |
| 639 |
wc01_Kvy(i,j,k,bi,bj)=Kvy(i,j,k,bi,bj) |
| 640 |
wc01_Kuz(i,j,k,bi,bj)=Kuz(i,j,k,bi,bj) |
| 641 |
wc01_Kvz(i,j,k,bi,bj)=Kvz(i,j,k,bi,bj) |
| 642 |
ENDDO |
| 643 |
ENDDO |
| 644 |
ENDDO |
| 645 |
ENDDO |
| 646 |
ENDDO |
| 647 |
|
| 648 |
c write the diffusion operator into file: |
| 649 |
|
| 650 |
write(fnamegeneric(1:80),'(1a,i3.3)') |
| 651 |
& 'wc01_3Doperator',smoothOpNbCur |
| 652 |
|
| 653 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
| 654 |
& nR,Kwx,1,1,mythid) |
| 655 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
| 656 |
& nR,Kwy,2,1,mythid) |
| 657 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
| 658 |
& nR,Kwz,3,1,mythid) |
| 659 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
| 660 |
& nR,Kux,4,1,mythid) |
| 661 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
| 662 |
& nR,Kvy,5,1,mythid) |
| 663 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
| 664 |
& nR,Kuz,6,1,mythid) |
| 665 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
| 666 |
& nR,Kvz,7,1,mythid) |
| 667 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
| 668 |
& nR,wc01_Kuy,8,1,mythid) |
| 669 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
| 670 |
& nR,wc01_Kvx,9,1,mythid) |
| 671 |
call mdswritefield(fnamegeneric,64,.false.,'RL', |
| 672 |
& nR,kappaRwc01,10,1,mythid) |
| 673 |
|
| 674 |
|
| 675 |
END |