1 |
gforget |
1.1 |
function [FLD]=diffsmooth2D(fld,dxLarge,dxSmall,fldRef); |
2 |
|
|
|
3 |
|
|
%object: implementation (gforget@mit.edu) of a diffusive smoother (Weaver and Courtier 2001) |
4 |
|
|
|
5 |
|
|
%input: fld field to be smoothed (masked with NaN) |
6 |
|
|
% dxCsm,dyCsm scale in first/second direction |
7 |
|
|
%output:FLD smoothed field |
8 |
|
|
|
9 |
|
|
%asumption: dxCsm/dyCsm are assumed to be given at the positions of U/V points |
10 |
|
|
|
11 |
|
|
global mygrid; |
12 |
|
|
|
13 |
|
|
dxC=mygrid.DXC; dyC=mygrid.DYC; |
14 |
|
|
dxG=mygrid.DXG; dyG=mygrid.DYG; |
15 |
|
|
rA=mygrid.RAC; |
16 |
|
|
|
17 |
|
|
%compute the direction of main axis: |
18 |
|
|
%%[dFLDdx,dFLDdy,ddFLDdxdx,ddFLDdydy]=calc_T_grad(fldRef,1); |
19 |
|
|
%%dFLDn=sqrt(dFLDdx.^2+dFLDdy.^2); |
20 |
|
|
%%ddFLDn=sqrt(ddFLDdxdx.^2+ddFLDdydy.^2); |
21 |
|
|
[dFLDdx,dFLDdy]=calc_T_grad(fldRef,1); |
22 |
|
|
dFLDn=sqrt(dFLDdx.^2+dFLDdy.^2); |
23 |
|
|
if 0; |
24 |
|
|
%FLDratio=dFLDn.*sqrt(mygrid.RAC)./max(fldRef,100); |
25 |
|
|
FLDratio=dFLDn.*dxLarge./max(fldRef,100); |
26 |
|
|
end; |
27 |
|
|
cs=dFLDdy; sn=-dFLDdx; |
28 |
|
|
%%cs=dFLDdx; sn=dFLDdy; |
29 |
|
|
cs(dFLDn>0)=cs(dFLDn>0)./dFLDn(dFLDn>0); |
30 |
|
|
sn(dFLDn>0)=sn(dFLDn>0)./dFLDn(dFLDn>0); |
31 |
|
|
if 0; |
32 |
|
|
FLDangle=fldRef; |
33 |
|
|
for iF=1:fldRef.nFaces; FLDangle{iF}=atan2(sn{iF},cs{iF}); end; |
34 |
|
|
end; |
35 |
|
|
|
36 |
|
|
%scale the diffusive operator: |
37 |
|
|
tmp0=dxLarge./dxC; tmp0(isnan(fld))=NaN; tmp00=nanmax(tmp0); |
38 |
|
|
tmp0=dxLarge./dyC; tmp0(isnan(fld))=NaN; tmp00=max([tmp00 nanmax(tmp0)]); |
39 |
|
|
smooth2D_nbt=tmp00; |
40 |
|
|
smooth2D_nbt=ceil(1.1*2*smooth2D_nbt^2); |
41 |
|
|
|
42 |
|
|
smooth2D_dt=1; |
43 |
|
|
smooth2D_T=smooth2D_nbt*smooth2D_dt; |
44 |
|
|
|
45 |
|
|
smooth2D_kLarge=dxLarge.*dxLarge/smooth2D_T/2; |
46 |
|
|
smooth2D_kSmall=dxSmall.*dxSmall/smooth2D_T/2; |
47 |
|
|
|
48 |
|
|
smooth2D_Kux=cs.*cs.*smooth2D_kLarge+sn.*sn.*smooth2D_kSmall; |
49 |
|
|
smooth2D_Kuy=cs.*sn.*(-smooth2D_kLarge+smooth2D_kSmall); |
50 |
|
|
smooth2D_Kvy=sn.*sn.*smooth2D_kLarge+cs.*cs.*smooth2D_kSmall; |
51 |
|
|
smooth2D_Kvx=cs.*sn.*(-smooth2D_kLarge+smooth2D_kSmall); |
52 |
|
|
|
53 |
|
|
%time-stepping loop: |
54 |
|
|
FLD=fld; |
55 |
|
|
|
56 |
|
|
for it=1:smooth2D_nbt; |
57 |
|
|
if mod(it,ceil(smooth2D_nbt/50))==0; fprintf([num2str(it) '/' num2str(smooth2D_nbt) ' done\n']); end; |
58 |
|
|
|
59 |
|
|
[dTdxAtU,dTdyAtV]=calc_T_grad(FLD,0); |
60 |
|
|
|
61 |
|
|
dTdyAtU=dTdxAtU; dTdxAtV=dTdyAtV; |
62 |
|
|
[dTdxAtU,dTdyAtV]=exch_UV_N(dTdxAtU,dTdyAtV); |
63 |
|
|
for iF=1:FLD.nFaces; |
64 |
|
|
msk=dTdxAtU{iF}(2:end-1,2:end-1); msk(~isnan(msk))=1; |
65 |
|
|
tmp1=dTdyAtV{iF}; tmp1(isnan(tmp1))=0; |
66 |
|
|
dTdyAtU{iF}=0.25*msk.*(tmp1(1:end-2,2:end-1)+tmp1(1:end-2,3:end)+... |
67 |
|
|
tmp1(2:end-1,2:end-1)+tmp1(2:end-1,3:end)); |
68 |
|
|
|
69 |
|
|
msk=dTdyAtV{iF}(2:end-1,2:end-1); msk(~isnan(msk))=1; |
70 |
|
|
tmp1=dTdxAtU{iF}; tmp1(isnan(tmp1))=0; |
71 |
|
|
dTdxAtV{iF}=0.25*msk.*(tmp1(2:end-1,1:end-2)+tmp1(3:end,1:end-2)+... |
72 |
|
|
tmp1(2:end-1,2:end-1)+tmp1(3:end,2:end-1)); |
73 |
|
|
end; |
74 |
|
|
dTdxAtU=cut_T_N(dTdxAtU); |
75 |
|
|
dTdyAtV=cut_T_N(dTdyAtV); |
76 |
|
|
|
77 |
|
|
tmpU=dTdxAtU.*smooth2D_Kux+dTdyAtU.*smooth2D_Kuy; |
78 |
|
|
tmpV=dTdyAtV.*smooth2D_Kvy+dTdxAtV.*smooth2D_Kvx; |
79 |
|
|
[fldDIV]=calc_UV_div(tmpU,tmpV); |
80 |
|
|
dFLDdt=smooth2D_dt*fldDIV./rA; |
81 |
|
|
FLD=FLD-dFLDdt; |
82 |
|
|
|
83 |
|
|
end; |
84 |
|
|
|
85 |
|
|
|