1 |
gforget |
1.2 |
function [fldOut]=runmean(fldIn,halfWindow,dim,varargin); |
2 |
|
|
%object: compute running mean window ('rmw') over a dimension |
3 |
|
|
%input: fldIn is the field to which the rmw will be applied |
4 |
|
|
% halfWindow is the half width of the rmw |
5 |
|
|
% dim is the dimension over which the rmw will be applied |
6 |
|
|
%optional: doCycle states whether the boundary condition is cyclic (1) or |
7 |
|
|
% not (0; default). If doCycle==0, the no. of averaged points |
8 |
gforget |
1.4 |
% decreases from 1+2*halfWindow to halfWindow at the edges, |
9 |
|
|
% and we mask all of those edge points with NaNs. |
10 |
gforget |
1.2 |
%output: fldOut is the resulting field |
11 |
gforget |
1.1 |
% |
12 |
gforget |
1.2 |
%notes: - NaNs are discarded in the rmw, implying that an average is |
13 |
|
|
% computed if the rmw contains at least 1 valid point. |
14 |
|
|
% - setting halfWindow to 0 implies fldOut=fldIn. |
15 |
|
|
|
16 |
|
|
%determine and check a couple things |
17 |
|
|
fld_isa_gcmfaces=isa(fldIn,'gcmfaces'); |
18 |
|
|
if fld_isa_gcmfaces; |
19 |
|
|
if dim<3; |
20 |
|
|
error('for gcmfaces objects runmean excludes dim=1 or 2'); |
21 |
|
|
end; |
22 |
|
|
end; |
23 |
|
|
|
24 |
|
|
if nargin==3; doCycle=0; else; doCycle=varargin{1}; end; |
25 |
|
|
|
26 |
|
|
%switch to array format if needed |
27 |
gforget |
1.4 |
if fld_isa_gcmfaces; fldIn=convert2array(fldIn); end; |
28 |
gforget |
1.2 |
|
29 |
|
|
%switch dim to first dimension |
30 |
|
|
sizeIn=size(fldIn); |
31 |
|
|
|
32 |
|
|
perm1to2=[1:length(sizeIn)]; |
33 |
|
|
perm1to2=[dim perm1to2(find(perm1to2~=dim))]; |
34 |
|
|
perm2to1=[[1:dim-1]+1 1 [dim+1:length(sizeIn)]]; |
35 |
|
|
sizeIn2=sizeIn(perm1to2); |
36 |
|
|
|
37 |
|
|
fldIn=permute(fldIn,perm1to2); |
38 |
|
|
|
39 |
|
|
sizeCur=size(fldIn); |
40 |
|
|
if ~doCycle; |
41 |
|
|
%add NaNs at both edges |
42 |
|
|
sizeCur(1)=sizeCur(1)+2*halfWindow; |
43 |
|
|
fldIn2=NaN*ones(sizeCur); |
44 |
|
|
fldIn2(halfWindow+1:end-halfWindow,:,:,:)=fldIn; |
45 |
|
|
fldIn=fldIn2; clear fldIn2; |
46 |
|
|
end; |
47 |
|
|
|
48 |
|
|
%create mask and remove NaNs: |
49 |
|
|
fldMsk=~isnan(fldIn); |
50 |
|
|
fldIn(isnan(fldIn))=0; |
51 |
|
|
fldCnt=0*fldIn; |
52 |
|
|
|
53 |
|
|
%apply the running mean |
54 |
|
|
fldOut=zeros(sizeCur); |
55 |
|
|
for tcur=-halfWindow:halfWindow |
56 |
gforget |
1.3 |
%To have halfWindow*2 coeffs rather than halfWindow*2+1, centered to the current |
57 |
|
|
%point, it is convenient to reduce the weight of the farthest points to 1/2. |
58 |
|
|
%This became necessary to get proper annual means, from monthly data, with halfWindow=6. |
59 |
|
|
if abs(tcur)==halfWindow; fac=1/2; else; fac=1; end; |
60 |
gforget |
1.2 |
tmp1=circshift(fldIn,[tcur zeros(1,length(sizeCur)-1)]); |
61 |
gforget |
1.3 |
fldOut=fldOut+fac*tmp1; |
62 |
gforget |
1.2 |
tmp1=circshift(fldMsk,[tcur zeros(1,length(sizeCur)-1)]); |
63 |
gforget |
1.3 |
fldCnt=fldCnt+fac*tmp1; |
64 |
gforget |
1.2 |
end |
65 |
gforget |
1.1 |
|
66 |
gforget |
1.4 |
fldCnt(fldCnt<2*halfWindow)=NaN; |
67 |
gforget |
1.2 |
fldOut=fldOut./fldCnt; |
68 |
gforget |
1.1 |
|
69 |
gforget |
1.2 |
if ~doCycle; |
70 |
|
|
fldOut=fldOut(halfWindow+1:end-halfWindow,:,:,:); |
71 |
|
|
%consistent with old version bug (one point offset) |
72 |
|
|
% fldOut=fldOut(halfWindow:end-halfWindow,:,:,:); |
73 |
|
|
end; |
74 |
gforget |
1.1 |
|
75 |
gforget |
1.2 |
%switch dimensions order back to original order |
76 |
|
|
fldOut=permute(fldOut,perm2to1); |
77 |
gforget |
1.1 |
|
78 |
gforget |
1.2 |
%switch back to gcmfaces format if needed |
79 |
|
|
if fld_isa_gcmfaces; fldOut=convert2array(fldOut); end; |
80 |
gforget |
1.1 |
|
81 |
|
|
|
82 |
|
|
|