1 |
gforget |
1.2 |
function [prof_interp,tile_corners]=gcmfaces_interp_coeffs(prof_lon,prof_lat,varargin); |
2 |
gforget |
1.1 |
%[prof_interp]=gcmfaces_interp_coeffs(prof_lon,prof_lat); |
3 |
|
|
%object: compute bilinear interpolation weights for prof_lon, prof_lat |
4 |
|
|
%inputs: prof_lon, prof_lat are column vectors |
5 |
|
|
%(optional) ni,nj is the MITgcm tile size (2 numbers total) |
6 |
|
|
%outputs: prof_interp contains face and tile numbers, |
7 |
|
|
% indices within tiles (within 0:ni+1,0:nj+1) |
8 |
|
|
% and interpolation weights (between 0 and 1) |
9 |
|
|
% of the four neighboring grid points. |
10 |
gforget |
1.2 |
%(optional) tile_corners contains XC11,XCNINJ,YC11,YCNINJ (for MITprof) |
11 |
gforget |
1.1 |
% |
12 |
|
|
%note: pathological cases (e.g. at edges) remain to be treated. |
13 |
|
|
%example: |
14 |
|
|
%prof=MITprof_load('ctd_feb2013.nc'); |
15 |
|
|
%[prof_interp]=gcmfaces_interp_coeffs(prof.prof_lon,prof.prof_lat); |
16 |
|
|
|
17 |
|
|
gcmfaces_global; |
18 |
|
|
|
19 |
|
|
doDisplay=0; |
20 |
gforget |
1.4 |
doVerbose=0; if myenv.verbose>=1; doVerbose=myenv.verbose; end; |
21 |
|
|
%set doVerbose to display points no associated with a polygon |
22 |
gforget |
1.1 |
|
23 |
|
|
%set-up tile information (domain decomposition to ni,nj blocs) |
24 |
|
|
if nargin<=2; |
25 |
|
|
ni=30; nj=30; |
26 |
|
|
else; |
27 |
|
|
ni=varargin{1}; |
28 |
|
|
nj=varargin{2}; |
29 |
|
|
end; |
30 |
|
|
|
31 |
|
|
map_tile=gcmfaces_loc_tile(ni,nj); |
32 |
|
|
loc_tile=gcmfaces_loc_tile(ni,nj,prof_lon,prof_lat); |
33 |
|
|
prof_tile=loc_tile.tileNo; |
34 |
|
|
list_tile=unique(prof_tile); |
35 |
|
|
|
36 |
|
|
%initialize output: |
37 |
|
|
prof_interp.face=NaN*prof_lon; |
38 |
|
|
prof_interp.tile=NaN*prof_lon; |
39 |
|
|
prof_interp.i=NaN*repmat(prof_lon,[1 4]); |
40 |
|
|
prof_interp.j=NaN*repmat(prof_lon,[1 4]); |
41 |
|
|
prof_interp.w=NaN*repmat(prof_lon,[1 4]); |
42 |
gforget |
1.2 |
% |
43 |
|
|
tile_corners.XC11=NaN*prof_lon; |
44 |
|
|
tile_corners.YC11=NaN*prof_lon; |
45 |
|
|
tile_corners.XCNINJ=NaN*prof_lon; |
46 |
|
|
tile_corners.YCNINJ=NaN*prof_lon; |
47 |
gforget |
1.1 |
|
48 |
|
|
%loop over tiles |
49 |
|
|
for ii=1:length(list_tile); |
50 |
|
|
%1) determine face of current tile ... |
51 |
|
|
tmp1=1*(map_tile==list_tile(ii)); |
52 |
|
|
tmp11=sum(sum(tmp1,1),2); tmp12=[]; |
53 |
|
|
for ff=1:tmp11.nFaces; tmp12=[tmp12,tmp11{ff}]; end; |
54 |
|
|
iiFace=find(tmp12); |
55 |
|
|
%... and its index range within face ... |
56 |
|
|
tmp1=tmp1{iiFace}; |
57 |
|
|
tmp11=sum(tmp1,2); |
58 |
|
|
iiMin=min(find(tmp11)); iiMax=max(find(tmp11)); |
59 |
|
|
tmp11=sum(tmp1,1); |
60 |
|
|
jjMin=min(find(tmp11)); jjMax=max(find(tmp11)); |
61 |
|
|
%... as well as the list of profiles in tile |
62 |
|
|
ii_prof=find(prof_tile==list_tile(ii)); |
63 |
gforget |
1.2 |
%tile corners |
64 |
|
|
XC11=mygrid.XC{iiFace}(iiMin,jjMin); |
65 |
|
|
YC11=mygrid.YC{iiFace}(iiMin,jjMin); |
66 |
|
|
XCNINJ=mygrid.XC{iiFace}(iiMax,jjMax); |
67 |
|
|
YCNINJ=mygrid.YC{iiFace}(iiMax,jjMax); |
68 |
|
|
|
69 |
gforget |
1.1 |
clear tmp*; |
70 |
|
|
|
71 |
|
|
%2) stereographic projection to current tile center: |
72 |
|
|
ii0=floor((iiMin+iiMax)/2); |
73 |
|
|
jj0=floor((jjMin+jjMax)/2); |
74 |
|
|
XC0=mygrid.XC{iiFace}(ii0,jj0); |
75 |
|
|
YC0=mygrid.YC{iiFace}(ii0,jj0); |
76 |
|
|
%for grid locations: |
77 |
|
|
[xx,yy]=gcmfaces_stereoproj(XC0,YC0); |
78 |
|
|
%for profile locations |
79 |
|
|
[prof_x,prof_y]=gcmfaces_stereoproj(XC0,YC0,prof_lon,prof_lat); |
80 |
|
|
|
81 |
|
|
% nrm=sqrt(prof_x.^2+prof_y.^2); |
82 |
|
|
%ii_prof=find(nrm<tan(pi/4/2));%points inside of pi/4 cone |
83 |
|
|
|
84 |
|
|
%3) form array of grid cell quadrilaterals |
85 |
|
|
xxx=exch_T_N(xx); yyy=exch_T_N(yy); |
86 |
|
|
x_quad=[]; y_quad=[]; i_quad=[]; j_quad=[]; |
87 |
|
|
for pp=1:4; |
88 |
|
|
switch pp; |
89 |
|
|
case 1; di=0; dj=0; |
90 |
|
|
case 2; di=1; dj=0; |
91 |
|
|
case 3; di=1; dj=1; |
92 |
|
|
case 4; di=0; dj=1; |
93 |
|
|
end; |
94 |
|
|
%note the shift in indices due to exchange above |
95 |
|
|
tmpx=xxx{iiFace}(iiMin+di:iiMax+1+di,jjMin+dj:jjMax+1+dj); |
96 |
|
|
tmpx=tmpx(:); x_quad=[x_quad tmpx]; |
97 |
|
|
tmpy=yyy{iiFace}(iiMin+di:iiMax+1+di,jjMin+dj:jjMax+1+dj); |
98 |
|
|
tmpy=tmpy(:); y_quad=[y_quad tmpy]; |
99 |
|
|
% |
100 |
|
|
tmpi=[0+di:iiMax-iiMin+1+di]'*ones(1,jjMax-jjMin+2); |
101 |
|
|
tmpi=tmpi(:); i_quad=[i_quad tmpi]; |
102 |
|
|
tmpj=ones(jjMax-jjMin+2,1)*[0+dj:jjMax-jjMin+1+dj]; |
103 |
|
|
tmpj=tmpj(:); j_quad=[j_quad tmpj]; |
104 |
|
|
end; |
105 |
|
|
|
106 |
|
|
%4) associate profile locations with quadrilaterals |
107 |
|
|
[angsum]=gcmfaces_polygonangle(x_quad,y_quad,prof_x(ii_prof),prof_y(ii_prof)); |
108 |
|
|
[II,JJ]=find(abs(angsum)>179);%+-360 for an interior point (+-180 for an edge point) |
109 |
|
|
if length(unique(JJ))~=length(JJ)&doVerbose; |
110 |
|
|
n0=num2str(length(JJ)-length(unique(JJ))); |
111 |
|
|
warning(['multiple polygons (' n0 ')']); |
112 |
gforget |
1.4 |
%store indices of such instances for display |
113 |
|
|
[a,b]=hist(JJ,unique(JJ)); |
114 |
|
|
KK=find(a>1); |
115 |
|
|
kk_prof=ii_prof(KK); |
116 |
|
|
kk_quad={}; |
117 |
|
|
for kk=1:length(KK); |
118 |
|
|
kk_quad{kk}=II(find(JJ==KK(kk))); |
119 |
|
|
end |
120 |
|
|
else; |
121 |
|
|
kk_prof=[]; |
122 |
gforget |
1.1 |
end; |
123 |
|
|
if length(unique(JJ))<length(ii_prof)&doVerbose; |
124 |
|
|
n0=num2str(length(ii_prof)-length(unique(JJ))); |
125 |
|
|
n1=num2str(length(ii_prof)); |
126 |
|
|
warning(['no polygon for ' n0 ' / ' n1]); |
127 |
|
|
%the following will then remove the corresponding profiles form ii_prof |
128 |
|
|
end; |
129 |
|
|
[C,IA,IC] = unique(JJ); |
130 |
|
|
% |
131 |
|
|
ii_prof0=ii_prof; |
132 |
|
|
ii_prof=ii_prof(C);%treated profiles |
133 |
|
|
jj_prof=setdiff(ii_prof0,ii_prof);%un-treated profiles |
134 |
|
|
% |
135 |
|
|
ii_quad=II(IA); |
136 |
gforget |
1.4 |
|
137 |
|
|
if length(kk_prof)>0&doVerbose>=3; |
138 |
|
|
for kk=1:length(kk_prof); |
139 |
|
|
figureL; |
140 |
|
|
tmpx=x_quad(kk_quad{kk},[1:4 1])'; |
141 |
|
|
tmpy=y_quad(kk_quad{kk},[1:4 1])'; |
142 |
|
|
plot(tmpx,tmpy,'k.-','MarkerSize',36); hold on; |
143 |
|
|
plot(prof_x(kk_prof(kk)),prof_y(kk_prof(kk)),'r.','MarkerSize',36) |
144 |
|
|
aa=axis; |
145 |
|
|
aa(1:2)=aa(1:2)+abs(diff(aa(1:2)))*[-0.1 0.1]; |
146 |
|
|
aa(3:4)=aa(3:4)+abs(diff(aa(3:4)))*[-0.1 0.1]; |
147 |
|
|
axis(aa); |
148 |
|
|
keyboard; |
149 |
|
|
end; |
150 |
|
|
end; |
151 |
|
|
|
152 |
|
|
if length(jj_prof)>0&doVerbose>=2; |
153 |
|
|
figureL; |
154 |
|
|
% |
155 |
|
|
subplot(2,1,1); |
156 |
|
|
plot(prof_x(ii_prof),prof_y(ii_prof),'.'); |
157 |
|
|
hold on; plot(x_quad(:),y_quad(:),'r.'); |
158 |
|
|
plot(prof_x(jj_prof),prof_y(jj_prof),'k.','MarkerSize',36); |
159 |
|
|
% |
160 |
|
|
subplot(2,1,2); |
161 |
|
|
tmpx=convert2vector(mygrid.XC); |
162 |
|
|
tmpy=convert2vector(mygrid.YC); |
163 |
|
|
tmpi=convert2vector(map_tile); |
164 |
|
|
tmpi=find(tmpi==ii); |
165 |
|
|
plot(tmpx(:),tmpy(:),'r.'); hold on; |
166 |
|
|
plot(tmpx(tmpi),tmpy(tmpi),'c.'); |
167 |
|
|
plot(prof_lon(ii_prof),prof_lat(ii_prof),'.'); |
168 |
|
|
plot(prof_lon(jj_prof),prof_lat(jj_prof),'k.','MarkerSize',36); |
169 |
|
|
% |
170 |
|
|
tmp1=prof_lon([ii_prof;jj_prof]); |
171 |
|
|
tmp2=prof_lat([ii_prof;jj_prof]); |
172 |
|
|
axis([min(tmp1) max(tmp1) min(tmp2) max(tmp2)]); |
173 |
|
|
% |
174 |
|
|
keyboard; |
175 |
|
|
end; |
176 |
gforget |
1.1 |
|
177 |
|
|
if doDisplay; |
178 |
|
|
figureL; |
179 |
|
|
xx_tile=xxx{iiFace}(iiMin:iiMax+2,jjMin:jjMax+2); |
180 |
|
|
yy_tile=yyy{iiFace}(iiMin:iiMax+2,jjMin:jjMax+2); |
181 |
|
|
pcolor(xx_tile,yy_tile,sqrt(xx_tile.^2+yy_tile.^2)); hold on; |
182 |
|
|
cc=caxis; cc(2)=cc(2)*2; caxis(cc); |
183 |
|
|
plot(prof_x(ii_prof),prof_y(ii_prof),'r.','MarkerSize',20); |
184 |
|
|
plot(prof_x(jj_prof),prof_y(jj_prof),'k.','MarkerSize',60); |
185 |
|
|
axis([-0.6 0.6 -0.6 0.6]/6); |
186 |
|
|
end; |
187 |
|
|
|
188 |
|
|
if ~isempty(ii_prof); |
189 |
|
|
%5) determine bi-linear interpolation weights: |
190 |
|
|
px=x_quad(ii_quad,:); |
191 |
|
|
py=y_quad(ii_quad,:); |
192 |
|
|
ox=prof_x(ii_prof); |
193 |
|
|
oy=prof_y(ii_prof); |
194 |
|
|
[ow]=gcmfaces_quadmap(px,py,ox,oy); |
195 |
|
|
|
196 |
|
|
%to double check interpolation |
197 |
|
|
% pw=squeeze(ow); |
198 |
|
|
% oxInterp=sum(pw.*px,2); |
199 |
|
|
% oyInterp=sum(pw.*py,2); |
200 |
gforget |
1.3 |
|
201 |
|
|
%round up coefficient to 4th digit (also to avoid slight negatives) |
202 |
|
|
test1=~isempty(find(ow(:)<-1e-5)); |
203 |
|
|
if test1; error('interp weight < 0 -- something went wrong'); end; |
204 |
|
|
test1=~isempty(find(ow(:)>1+1e-5)); |
205 |
|
|
if test1; error('interp weight >1 -- something went wrong'); end; |
206 |
|
|
% |
207 |
|
|
ow=1e-4*round(ow*1e4); |
208 |
|
|
sumw=repmat(sum(ow,3),[1 1 4]); |
209 |
|
|
ow=ow./sumw; |
210 |
gforget |
1.1 |
|
211 |
|
|
%6) output interpolation specs: |
212 |
|
|
prof_interp.face(ii_prof,1)=iiFace*(1+0*ii_quad); |
213 |
|
|
prof_interp.tile(ii_prof,1)=list_tile(ii)*(1+0*ii_quad); |
214 |
|
|
prof_interp.i(ii_prof,:)=i_quad(ii_quad,:); |
215 |
|
|
prof_interp.j(ii_prof,:)=j_quad(ii_quad,:); |
216 |
|
|
prof_interp.w(ii_prof,:)=squeeze(ow); |
217 |
gforget |
1.2 |
% |
218 |
|
|
tile_corners.XC11(ii_prof)=XC11; |
219 |
|
|
tile_corners.YC11(ii_prof)=YC11; |
220 |
|
|
tile_corners.XCNINJ(ii_prof)=XCNINJ; |
221 |
|
|
tile_corners.YCNINJ(ii_prof)=YCNINJ; |
222 |
gforget |
1.1 |
end; |
223 |
|
|
|
224 |
|
|
end;%for ii=1:length(list_tile); |
225 |
|
|
|
226 |
|
|
% if doVerbose; |
227 |
|
|
n1=sum(~isnan(prof_interp.face)); |
228 |
|
|
n2=sum(isnan(prof_interp.face)); |
229 |
|
|
fprintf(['interpolated points: ' num2str(n1) '\n']); |
230 |
|
|
fprintf(['un-treated points: ' num2str(n2) '\n']); |
231 |
|
|
% end; |
232 |
|
|
|