1 |
gforget |
1.12 |
function []=diags_grid_parms(dirModel,listTimes,doInteractive); |
2 |
gforget |
1.15 |
%object : load grid, set params, and save myparms to dirMat |
3 |
gforget |
1.8 |
%input : listTimes is the time list obtained from diags_list_times |
4 |
|
|
%(optional) doInteractive=1 allows users to specify parameters interactively |
5 |
|
|
% doInteractive = 0 (default) uses ECCO v4 parameters |
6 |
|
|
% and omits budgets and model-data misfits analyses |
7 |
gforget |
1.1 |
|
8 |
|
|
%global variables |
9 |
|
|
gcmfaces_global; |
10 |
|
|
global myparms; |
11 |
|
|
|
12 |
|
|
%load grid |
13 |
gforget |
1.15 |
diags_grid(dirModel,doInteractive); |
14 |
gforget |
1.14 |
|
15 |
gforget |
1.1 |
%set default for model run parameters |
16 |
gforget |
1.8 |
if doInteractive; |
17 |
|
|
choiceParams=input(['choice of default parameters? (1=ecco v4, ' ... |
18 |
|
|
'2=core, 3=ecco2 adjoint, 4=ecco v3, 5=core-Jeff)\n']); |
19 |
|
|
else; |
20 |
|
|
choiceParams=1; |
21 |
|
|
end; |
22 |
gforget |
1.15 |
myparms=default_parms(myparms,choiceParams); |
23 |
gforget |
1.1 |
|
24 |
|
|
%allow user to change model params if necessary |
25 |
gforget |
1.8 |
myparms=review_parms(myparms,listTimes,doInteractive); |
26 |
gforget |
1.1 |
|
27 |
gforget |
1.16 |
function [parms]=default_parms(parms,choiceParams); |
28 |
gforget |
1.1 |
%set model parameters to default (ecco_v4) |
29 |
|
|
|
30 |
gforget |
1.6 |
if choiceParams==1|choiceParams==2|choiceParams==4|choiceParams==5; |
31 |
gforget |
1.3 |
parms.yearFirst=1992; %first year covered by model integration |
32 |
gforget |
1.5 |
parms.yearLast =2011; %last year covered by model integration |
33 |
gforget |
1.1 |
parms.yearInAve=[parms.yearFirst parms.yearLast]; %period for time averages and variance computations |
34 |
gforget |
1.3 |
parms.timeStep =3600; %model time step for tracers |
35 |
gforget |
1.1 |
parms.iceModel =1;%0=use freezing point 1=use pkg/seaice 2=use pkg/thsice |
36 |
gforget |
1.3 |
parms.useRFWF =1;%1=real fresh water flux 0=virtual salt flux |
37 |
|
|
parms.useNLFS =2;%2=rstar 1=nlfs 0=linear free surface |
38 |
|
|
parms.rhoconst =1029; %sea water density |
39 |
gforget |
1.1 |
parms.rcp =3994*parms.rhoconst; % sea water rho X heat capacity |
40 |
|
|
parms.rhoi = 910; %sea ice density |
41 |
|
|
parms.rhosn = 330; %snow density |
42 |
|
|
parms.flami = 3.34e05; % latent heat of fusion of ice/snow (J/kg) |
43 |
|
|
parms.flamb = 2.50e06; % latent heat of evaporation (J/kg) |
44 |
gforget |
1.3 |
parms.SIsal0 =4; |
45 |
gforget |
1.2 |
if choiceParams==2; |
46 |
|
|
parms.yearFirst=1948; %first year covered by model integration |
47 |
|
|
parms.yearLast =2007; %last year covered by model integration |
48 |
gforget |
1.7 |
parms.yearInAve = [1948 2007]; |
49 |
gforget |
1.2 |
end; |
50 |
gforget |
1.4 |
if choiceParams==4; |
51 |
|
|
parms.useRFWF =0;%1=real fresh water flux 0=virtual salt flux |
52 |
|
|
parms.useNLFS =0;%2=rstar 1=nlfs 0=linear free surface |
53 |
|
|
end; |
54 |
gforget |
1.6 |
if choiceParams==5; |
55 |
|
|
parms.yearFirst=2006; %first year covered by model integration |
56 |
|
|
parms.yearLast =2305; %last year covered by model integration |
57 |
|
|
parms.yearInAve = [2006 2305]; |
58 |
|
|
end; |
59 |
gforget |
1.2 |
end; |
60 |
|
|
|
61 |
|
|
if choiceParams==3; |
62 |
|
|
parms.yearFirst=2004; %first year covered by model integration |
63 |
|
|
parms.yearLast =2005; %last year covered by model integration |
64 |
|
|
parms.yearInAve=[parms.yearFirst parms.yearLast]; %period for time averages and variance computations |
65 |
|
|
parms.timeStep =1200; %model time step for tracers |
66 |
|
|
parms.iceModel =1;%0=use freezing point 1=use pkg/seaice 2=use pkg/thsice |
67 |
|
|
parms.useRFWF =0;%1=real fresh water flux 0=virtual salt flux |
68 |
|
|
parms.useNLFS =0;%2=rstar 1=nlfs 0=linear free surface |
69 |
|
|
parms.rhoconst =1027.5; %sea water density |
70 |
|
|
parms.rcp =3994*parms.rhoconst; % sea water rho X heat capacity |
71 |
|
|
parms.rhoi = 910; %sea ice density |
72 |
|
|
parms.rhosn = 330; %snow density |
73 |
|
|
parms.flami = 3.34e05; % latent heat of fusion of ice/snow (J/kg) |
74 |
|
|
parms.flamb = 2.50e06; % latent heat of evaporation (J/kg) |
75 |
|
|
parms.SIsal0 = 0; |
76 |
|
|
end; |
77 |
gforget |
1.1 |
|
78 |
gforget |
1.8 |
function [parms]=review_parms(parms,listTimes,doInteractive); |
79 |
gforget |
1.1 |
%review model parameters, correct them if needed, and check a couple more things |
80 |
|
|
|
81 |
|
|
test1=1;%so that we print params at least once |
82 |
|
|
while test1; |
83 |
|
|
fprintf('\n\n'); |
84 |
|
|
gcmfaces_msg('model parameters summary','==== '); |
85 |
|
|
|
86 |
|
|
tmp1=sprintf('parms.yearFirst = %i (first year covered by model integration)',parms.yearFirst); gcmfaces_msg(tmp1,'== '); |
87 |
|
|
tmp1=sprintf('parms.yearLast = %i (first year covered by model integration)',parms.yearLast); gcmfaces_msg(tmp1,'== '); |
88 |
|
|
tmp1=sprintf('parms.yearInAve = [%i %i] (time mean and variance years)',parms.yearInAve); gcmfaces_msg(tmp1,'== '); |
89 |
|
|
tmp1=sprintf('parms.timeStep = %i (model time step for tracers)',parms.timeStep); gcmfaces_msg(tmp1,'== '); |
90 |
|
|
tmp1=sprintf('parms.iceModel = %i (0=freezing point 1=pkg/seaice 2=pkg/thsice)',parms.iceModel); gcmfaces_msg(tmp1,'== '); |
91 |
|
|
tmp1=sprintf('parms.useRFWF = %i (1=real fresh water flux 0=virtual salt flux)',parms.useRFWF); gcmfaces_msg(tmp1,'== '); |
92 |
|
|
tmp1=sprintf('parms.useNLFS = %i; (2=rstar 1=nlfs 0=linear free surface)',parms.useNLFS); gcmfaces_msg(tmp1,'== '); |
93 |
|
|
tmp1=sprintf('parms.rhoconst = %0.6g (sea water density)',parms.rhoconst); gcmfaces_msg(tmp1,'== '); |
94 |
|
|
tmp1=sprintf('parms.rcp = %0.6g (sea water density X heat capacity)',parms.rcp); gcmfaces_msg(tmp1,'== '); |
95 |
|
|
if parms.iceModel==1; |
96 |
|
|
tmp1=sprintf('parms.rhoi = %0.6g (sea ice density)',parms.rhoi); gcmfaces_msg(tmp1,'== '); |
97 |
|
|
tmp1=sprintf('parms.rhosn = %0.6g (snow density)',parms.rhosn); gcmfaces_msg(tmp1,'== '); |
98 |
|
|
tmp1=sprintf('parms.flami = %0.6g (latent heat of fusion of ice/snow in J/kg)',parms.flami); gcmfaces_msg(tmp1,'== '); |
99 |
|
|
tmp1=sprintf('parms.flamb = %0.6g (latent heat of evaporation in J/kg)',parms.flamb); gcmfaces_msg(tmp1,'== '); |
100 |
|
|
tmp1=sprintf('parms.SIsal0 = %0.6g (sea ice constant salinity)',parms.SIsal0); gcmfaces_msg(tmp1,'== '); |
101 |
|
|
%tmp1=sprintf('',); gcmfaces_msg(tmp1,'== '); |
102 |
|
|
else; |
103 |
|
|
error('only parms.iceModel=1 is currently treated\n'); |
104 |
|
|
end; |
105 |
|
|
|
106 |
gforget |
1.8 |
if doInteractive; |
107 |
|
|
gcmfaces_msg('to change a param type e.g. ''parms.yearFirst=1;'' or hit return if all params are ok. Change a param?','==== '); |
108 |
|
|
tmp1=input(''); |
109 |
|
|
test1=~isempty(tmp1); %so that we change param and iterate process |
110 |
|
|
if test1; eval(tmp1); end; |
111 |
|
|
else; |
112 |
|
|
test1=[]; |
113 |
|
|
end; |
114 |
gforget |
1.1 |
end; |
115 |
|
|
|
116 |
|
|
%determine a few more things about the diagnostic time axis |
117 |
|
|
fprintf('\n\n'); |
118 |
|
|
parms.diagsNbRec=length(listTimes); |
119 |
|
|
test1=median(diff(listTimes)*parms.timeStep/86400); |
120 |
|
|
if abs(test1-30.5)<1; parms.diagsAreMonthly=1; else; parms.diagsAreMonthly=0; end; |
121 |
|
|
if abs(test1-365.25)<1; parms.diagsAreAnnual=1; else; parms.diagsAreAnnual=0; end; |
122 |
gforget |
1.8 |
if doInteractive; |
123 |
gforget |
1.9 |
tmp1=sprintf('parms.diagsNbRec = %i (number of records, based on model output files)',parms.diagsNbRec); gcmfaces_msg(tmp1,'== '); |
124 |
|
|
tmp1=sprintf('parms.diagsAreMonthly = %i (0/1 = false/true; based on output frequency)',parms.diagsAreMonthly); gcmfaces_msg(tmp1,'== '); |
125 |
|
|
tmp1=sprintf('parms.diagsAreAnnual = %i (0/1 = false/true; based on output frequency)',parms.diagsAreAnnual); gcmfaces_msg(tmp1,'== '); |
126 |
gforget |
1.8 |
gcmfaces_msg('hit return if this seems correct otherwise stop here','== '); test0=input(''); if ~isempty(test0); error('likely dir problem'); end; |
127 |
|
|
end; |
128 |
gforget |
1.1 |
|
129 |
|
|
listTimes2=parms.yearFirst+listTimes*parms.timeStep/86400/365.25;%this approximation of course makes things simpler |
130 |
|
|
tmp1=-0.5*diff(listTimes,1,1)*parms.timeStep/86400/365.25; tmp1=[median(tmp1);tmp1]; |
131 |
|
|
listTimes2=listTimes2+tmp1;%this converts the enddate to the middate of pkg/diags |
132 |
|
|
ii=find(listTimes2>=parms.yearInAve(1)&listTimes2<=parms.yearInAve(2)+1); |
133 |
|
|
if parms.diagsAreMonthly;%then restrict to full years |
134 |
gforget |
1.6 |
ni=floor(length(ii)/12)*12; |
135 |
|
|
if ni>0; |
136 |
|
|
parms.recInAve=[ii(1) ii(floor(ni))]; |
137 |
|
|
else; |
138 |
|
|
parms.recInAve=[ii(1) ii(end)]; |
139 |
|
|
end; |
140 |
gforget |
1.1 |
elseif ~isempty(ii); |
141 |
|
|
parms.recInAve=[ii(1) ii(end)]; |
142 |
|
|
else; |
143 |
|
|
parms.recInAve=[1 1]; |
144 |
|
|
end; |
145 |
gforget |
1.9 |
if doInteractive; |
146 |
|
|
tmp1=sprintf('parms.recInAve = [%i %i] (time mean and variance records)',parms.recInAve); gcmfaces_msg(tmp1,'== '); |
147 |
|
|
end; |
148 |
gforget |
1.1 |
|
149 |
|
|
fprintf('\n\n'); |
150 |
|
|
|