1 |
gforget |
1.1 |
function [val]=gcmfaces_interp_2d(fld,lon,lat,varargin); |
2 |
|
|
%object: linearly interpolate field to given positions |
3 |
|
|
%inputs: fld is a 2D gcmfaces field |
4 |
|
|
% lon,lat are position vectors |
5 |
|
|
%optional: doNearFill (1 by default) to use the nearest |
6 |
|
|
% neighbor to complement linear interp |
7 |
|
|
%outputs: val is the vector of interpolated values |
8 |
|
|
% |
9 |
|
|
%pre-requisite: generate the delaunay triangulation using gcmfaces_bindata |
10 |
|
|
%assumption: fld should show NaN for missing values |
11 |
|
|
|
12 |
|
|
warning('off','MATLAB:dsearch:DeprecatedFunction'); |
13 |
|
|
|
14 |
|
|
global mygrid mytri myenv; |
15 |
|
|
|
16 |
|
|
%inputs and pre-requisites |
17 |
|
|
if ~isfield(myenv,'useDelaunayTri'); |
18 |
|
|
myenv.useDelaunayTri=~isempty(which('DelaunayTri')); |
19 |
|
|
end; |
20 |
|
|
|
21 |
|
|
if isempty(mytri); |
22 |
|
|
error('missing triangulation (mytri; from gcmfaces_bindata)'); |
23 |
|
|
end; |
24 |
|
|
|
25 |
|
|
if nargin>3; |
26 |
|
|
doNearFill=varargin{1}; |
27 |
|
|
else; |
28 |
|
|
doNearFill=1; |
29 |
|
|
end; |
30 |
|
|
|
31 |
|
|
%switch longitude range to -180+180 or 0-360 according to grid |
32 |
|
|
if max(mygrid.XC)<0; |
33 |
|
|
lon(find(lon>180))=lon(find(lon>180))-360; |
34 |
|
|
end; |
35 |
|
|
|
36 |
|
|
if max(mygrid.XC)>180; |
37 |
|
|
lon(find(lon<0))=lon(find(lon<0))+360; |
38 |
|
|
end; |
39 |
|
|
|
40 |
|
|
%do the actual interpolation |
41 |
|
|
if ~myenv.useDelaunayTri;%(code from old griddata.m) |
42 |
|
|
|
43 |
|
|
% Find the nearest triangle (t) |
44 |
|
|
x=convert2array(mygrid.XC); x=x(mytri.kk); |
45 |
|
|
y=convert2array(mygrid.YC); y=y(mytri.kk); |
46 |
|
|
VEC=convert2array(fld); VEC=VEC(mytri.kk); |
47 |
|
|
t = tsearch(x,y,mytri.TRI,lon',lat')';%the order of dims matters!! |
48 |
|
|
|
49 |
|
|
% Only keep the relevant triangles. |
50 |
|
|
out = find(isnan(t)); |
51 |
|
|
if ~isempty(out), t(out) = ones(size(out)); end |
52 |
|
|
tri = mytri.TRI(t(:),:); |
53 |
|
|
|
54 |
|
|
% Compute Barycentric coordinates (w). P. 78 in Watson. |
55 |
|
|
del = (x(tri(:,2))-x(tri(:,1))) .* (y(tri(:,3))-y(tri(:,1))) - ... |
56 |
|
|
(x(tri(:,3))-x(tri(:,1))) .* (y(tri(:,2))-y(tri(:,1))); |
57 |
|
|
w(:,3) = ((x(tri(:,1))-lon(:)).*(y(tri(:,2))-lat(:)) - ... |
58 |
|
|
(x(tri(:,2))-lon(:)).*(y(tri(:,1))-lat(:))) ./ del; |
59 |
|
|
w(:,2) = ((x(tri(:,3))-lon(:)).*(y(tri(:,1))-lat(:)) - ... |
60 |
|
|
(x(tri(:,1))-lon(:)).*(y(tri(:,3))-lat(:))) ./ del; |
61 |
|
|
w(:,1) = ((x(tri(:,2))-lon(:)).*(y(tri(:,3))-lat(:)) - ... |
62 |
|
|
(x(tri(:,3))-lon(:)).*(y(tri(:,2))-lat(:))) ./ del; |
63 |
|
|
|
64 |
|
|
val = sum(VEC(tri) .* w,2); |
65 |
|
|
val=reshape(val,size(lon)); |
66 |
|
|
|
67 |
|
|
else;%(use TriScatteredInterp) |
68 |
|
|
|
69 |
|
|
%get interpolant |
70 |
|
|
VEC=convert2array(fld); VEC=VEC(mytri.kk); |
71 |
|
|
F = TriScatteredInterp(mytri.TRI, VEC); |
72 |
|
|
%do interpolation |
73 |
|
|
val=F(lon,lat); |
74 |
|
|
|
75 |
|
|
end; |
76 |
|
|
|
77 |
|
|
if doNearFill;%use the nearest neighbor to complement linear interp |
78 |
|
|
kk=gcmfaces_bindata(lon(:),lat(:)); |
79 |
|
|
ARR=convert2array(fld); |
80 |
|
|
val2=ARR(kk); |
81 |
|
|
val(isnan(val))=val2(isnan(val)); |
82 |
|
|
end; |
83 |
|
|
|
84 |
|
|
|