1 |
gforget |
1.3 |
function [FLD]=calc_overturn(fldU,fldV); |
2 |
gforget |
1.2 |
%object: compute meridional overturning streamfunction |
3 |
|
|
%inputs: fldU and fldV are the fields of grid point transport |
4 |
|
|
%output: FLD is the streamfunction |
5 |
gforget |
1.3 |
% |
6 |
|
|
%notes: mygrid.LATS_MASKS is the set of quasi longitudinal lines along which |
7 |
|
|
% transports will integrated, as computed in gcmfaces_lines_zonal |
8 |
gforget |
1.1 |
|
9 |
|
|
global mygrid; |
10 |
|
|
|
11 |
|
|
%initialize output: |
12 |
|
|
n3=max(size(fldU.f1,3),1); n4=max(size(fldV.f1,4),1); |
13 |
gforget |
1.3 |
FLD=NaN*squeeze(zeros(length(mygrid.LATS_MASKS),n3+1,n4)); |
14 |
gforget |
1.1 |
|
15 |
|
|
%prepare fldU/fldV: |
16 |
|
|
fldU(isnan(fldU))=0; fldV(isnan(fldV))=0; |
17 |
|
|
|
18 |
|
|
dxg=mk3D(mygrid.DXG,fldU); dyg=mk3D(mygrid.DYG,fldU); drf=mk3D(mygrid.DRF,fldU); |
19 |
|
|
for k4=1:n4; |
20 |
gforget |
1.4 |
fldU(:,:,:,k4)=fldU(:,:,:,k4).*dyg.*drf*1e-6; |
21 |
|
|
fldV(:,:,:,k4)=fldV(:,:,:,k4).*dxg.*drf*1e-6; |
22 |
gforget |
1.1 |
end; |
23 |
|
|
|
24 |
|
|
%use array format to speed up computation below: |
25 |
|
|
fldU=convert2array(fldU); fldV=convert2array(fldV); |
26 |
|
|
|
27 |
gforget |
1.3 |
for iy=1:length(mygrid.LATS_MASKS); |
28 |
gforget |
1.1 |
|
29 |
|
|
%get list ofpoints that form a zonal band: |
30 |
gforget |
1.5 |
mskW=mygrid.LATS_MASKS(iy).mskWedge; |
31 |
|
|
vecW=gcmfaces_subset(mskW,fldU); |
32 |
|
|
mskS=mygrid.LATS_MASKS(iy).mskSedge; |
33 |
|
|
vecS=gcmfaces_subset(mskS,fldV); |
34 |
|
|
trsp=sum(vecW,1)+sum(vecS,1); |
35 |
gforget |
1.1 |
|
36 |
|
|
%store: |
37 |
gforget |
1.5 |
FLD(iy,1:n3,:)=-flipdim(cumsum(flipdim(trsp,2),2),2); |
38 |
gforget |
1.1 |
|
39 |
|
|
end; |
40 |
|
|
|
41 |
|
|
FLD(:,end,:)=0; |
42 |
|
|
|
43 |
|
|
|