1 |
gforget |
1.1 |
function [contOCN,hdivOCN,zdivOCN,budgSo,... |
2 |
|
|
contICE,hdivICE,zdivICE,budgSi]=... |
3 |
|
|
calc_budget_salt(kBudget); |
4 |
|
|
% CALC_BUDGET_SALT(kBudget) |
5 |
|
|
|
6 |
|
|
gcmfaces_global; |
7 |
|
|
|
8 |
|
|
%get variables from caller routine: |
9 |
|
|
%---------------------------------- |
10 |
|
|
|
11 |
|
|
global myparms; |
12 |
|
|
|
13 |
|
|
list_variables={'SALT','AB_gS','SRELAX','SIheff',... |
14 |
|
|
'SFLUX','oceSPflx','oceSflux','WSLTMASS',... |
15 |
|
|
'ADVx_SLT','DFxE_SLT','ADVy_SLT','DFyE_SLT',... |
16 |
|
|
'ADVxHEFF','ADVxSNOW','DFxEHEFF','DFxESNOW',... |
17 |
|
|
'ADVyHEFF','ADVySNOW','DFyEHEFF','DFyESNOW'}; |
18 |
|
|
|
19 |
|
|
if kBudget>1; |
20 |
|
|
list_variables={list_variables{:},'oceSPtnd','ADVr_SLT','DFrE_SLT',... |
21 |
|
|
'DFrI_SLT','ADVr_SLT','DFrE_SLT','DFrI_SLT'}; |
22 |
|
|
end; |
23 |
|
|
|
24 |
|
|
for vv=1:length(list_variables); |
25 |
|
|
v = evalin('caller',list_variables{vv}); |
26 |
|
|
eval([list_variables{vv} '=v;']); |
27 |
|
|
end; |
28 |
|
|
clear v; |
29 |
|
|
|
30 |
|
|
test3d=length(size(ADVx_SLT{1}))>2; |
31 |
|
|
|
32 |
|
|
%compute mapped budget: |
33 |
|
|
%---------------------- |
34 |
|
|
|
35 |
|
|
contOCN=myparms.rhoconst*SALT-myparms.rhoconst*AB_gS; |
36 |
|
|
contICE=myparms.SIsal0*myparms.rhoi*SIheff; |
37 |
|
|
% |
38 |
|
|
budgSo.tend=mk3D(mygrid.RAC,contOCN).*contOCN;%g/s |
39 |
|
|
budgSi.tend=mygrid.RAC.*contICE;%g/s |
40 |
|
|
% |
41 |
|
|
contOCN=nansum(contOCN,3); |
42 |
|
|
contTOT=contOCN+contICE; |
43 |
|
|
|
44 |
|
|
%vertical divergence (air-sea fluxes or vertical adv/dif) |
45 |
|
|
zdivOCN=SFLUX+oceSPflx; |
46 |
|
|
zdivICE=-zdivOCN+SRELAX; |
47 |
|
|
%in linear surface we omit : |
48 |
|
|
if ~myparms.useNLFS; zdivOCN=zdivOCN-myparms.rhoconst*WSLTMASS; end; |
49 |
|
|
%working approach for real fresh water (?) and virtual salt flux |
50 |
|
|
if ~myparms.useRFWF|~myparms.useNLFS; zdivICE=-oceSflux; end; |
51 |
|
|
%for deep ocean layer : |
52 |
|
|
if kBudget>1; |
53 |
|
|
zdivOCN=-(ADVr_SLT+DFrE_SLT+DFrI_SLT)./mygrid.RAC*myparms.rhoconst; |
54 |
|
|
zdivOCN=zdivOCN+oceSPtnd;%.*msk; |
55 |
|
|
end; |
56 |
|
|
zdivTOT=zdivOCN+zdivICE; |
57 |
|
|
% |
58 |
|
|
if test3d; |
59 |
|
|
nr=length(mygrid.RC); |
60 |
|
|
trWtop=-(ADVr_SLT+DFrE_SLT+DFrI_SLT)*myparms.rhoconst; |
61 |
|
|
tmp1=mk3D(oceSPflx,oceSPtnd)-cumsum(oceSPtnd,3); |
62 |
|
|
tmp1=tmp1.*mk3D(mygrid.RAC,tmp1); |
63 |
|
|
trWtop(:,:,2:nr)=trWtop(:,:,2:nr)+tmp1(:,:,1:nr-1); |
64 |
|
|
% |
65 |
|
|
trWtop(:,:,1)=zdivOCN.*mygrid.RAC; |
66 |
|
|
trWbot=trWtop(:,:,2:length(mygrid.RC)); |
67 |
|
|
trWbot(:,:,length(mygrid.RC))=0; |
68 |
|
|
% |
69 |
|
|
budgSo.trWtop=trWtop;%kg/s |
70 |
|
|
budgSo.trWbot=trWbot;%kg/s |
71 |
|
|
else; |
72 |
|
|
budgSo.trWtop=mygrid.RAC.*zdivOCN; budgSo.trWbot=mygrid.RAC*0;%kg/s |
73 |
|
|
end; |
74 |
|
|
budgSi.trWtop=0*mygrid.RAC; budgSi.trWbot=budgSo.trWtop(:,:,1);%kg/s |
75 |
|
|
|
76 |
|
|
%horizontal divergence (advection and diffusion) |
77 |
|
|
tmpUo=myparms.rhoconst*(ADVx_SLT+DFxE_SLT); |
78 |
|
|
tmpVo=myparms.rhoconst*(ADVy_SLT+DFyE_SLT); |
79 |
|
|
hdivOCN=calc_UV_conv(nansum(tmpUo,3),nansum(tmpVo,3)); |
80 |
|
|
tmpUi=myparms.SIsal0*(myparms.rhoi*DFxEHEFF+myparms.rhoi*ADVxHEFF); |
81 |
|
|
tmpVi=myparms.SIsal0*(myparms.rhoi*DFyEHEFF+myparms.rhoi*ADVyHEFF); |
82 |
|
|
hdivICE=calc_UV_conv(tmpUi,tmpVi); %no dh needed here |
83 |
|
|
hdivTOT=hdivOCN+hdivICE; |
84 |
|
|
% |
85 |
|
|
budgSo.trU=tmpUo; budgSo.trV=tmpVo;%g/s |
86 |
|
|
budgSi.trU=tmpUi; budgSi.trV=tmpVi;%g/s |
87 |
|
|
|
88 |
|
|
|