1 |
gforget |
1.7 |
function [fldBAR]=calc_barostream(fldU,fldV,noDiv,list_factors); |
2 |
gforget |
1.5 |
%object: compute barotropic streamfunction |
3 |
|
|
%inputs: fldU and fldV are the fields of grid point transport |
4 |
gforget |
1.7 |
%optional: noDiv (default is 1). If 1 then remove the divergent |
5 |
|
|
% part of the flow field first. If 0 then dont. |
6 |
|
|
% list_factors (default is {'dh','dz'}) |
7 |
gforget |
1.5 |
%output: FLD is the streamfunction |
8 |
gforget |
1.7 |
%notes: the result is converted to Sv |
9 |
gforget |
1.1 |
|
10 |
|
|
global mygrid; |
11 |
|
|
|
12 |
gforget |
1.7 |
if nargin<3; noDiv=1; end; |
13 |
|
|
if nargin<4; list_factors={'dh','dz'}; end; |
14 |
|
|
|
15 |
gforget |
1.2 |
%0) prepare fldU/fldV (transport fields): |
16 |
gforget |
1.1 |
n3=max(size(fldU.f1,3),1); n4=max(size(fldV.f1,4),1); |
17 |
|
|
|
18 |
|
|
fldU(isnan(fldU))=0; fldV(isnan(fldV))=0; |
19 |
|
|
|
20 |
gforget |
1.7 |
|
21 |
|
|
dxg=mk3D(mygrid.DXG,fldU); dyg=mk3D(mygrid.DYG,fldU); |
22 |
|
|
if size(fldU.f1,3)==length(mygrid.DRF); drf=mk3D(mygrid.DRF,fldU); else; drf=fldU; drf(:)=1; end; |
23 |
|
|
facW=drf; facW(:)=1; facS=facW; |
24 |
|
|
for ii=1:length(list_factors); |
25 |
|
|
tmp1=list_factors{ii}; |
26 |
|
|
if strcmp(tmp1,'dh'); facW=facW.*dyg; facS=facS.*dxg; |
27 |
|
|
elseif strcmp(tmp1,'dz'); facW=facW.*drf; facS=facS.*drf; |
28 |
|
|
elseif strcmp(tmp1,'hfac'); facW=facW.*mygrid.hFacW; facS=facS.*mygrid.hFacS; |
29 |
|
|
elseif isempty(tmp1); 1; |
30 |
gforget |
1.8 |
else; fprintf('error in calc_barostream : non supported factor\n'); return; |
31 |
gforget |
1.7 |
end; |
32 |
|
|
end; |
33 |
|
|
|
34 |
gforget |
1.1 |
for k4=1:n4; |
35 |
gforget |
1.7 |
fldU(:,:,:,k4)=fldU(:,:,:,k4).*facW; |
36 |
|
|
fldV(:,:,:,k4)=fldV(:,:,:,k4).*facS; |
37 |
gforget |
1.1 |
end; |
38 |
|
|
|
39 |
gforget |
1.3 |
%apply mask: |
40 |
|
|
fldU=sum(fldU,3).*mygrid.mskW(:,:,1); |
41 |
|
|
fldV=sum(fldV,3).*mygrid.mskS(:,:,1); |
42 |
|
|
%take out thedivergent part of the flow: |
43 |
gforget |
1.7 |
if noDiv; |
44 |
gforget |
1.3 |
[fldUdiv,fldVdiv,fldDivPot]=diffsmooth2D_div_inv(fldU,fldV); |
45 |
|
|
fldU=fldU-fldUdiv; fldV=fldV-fldVdiv; |
46 |
|
|
end; |
47 |
gforget |
1.1 |
|
48 |
gforget |
1.2 |
%1) compute streamfunction face by face: |
49 |
|
|
[fldU,fldV]=exch_UV(fldU,fldV); fldU(isnan(fldU))=0; fldV(isnan(fldV))=0; |
50 |
|
|
tmp1=cumsum(fldV,1); for iF=1:fldU.nFaces; tmp2=tmp1{iF}; tmp1{iF}=[zeros(1,size(tmp2,2));tmp2]; end; |
51 |
|
|
tmp2=diff(tmp1,1,2)+fldU; tmp3=cumsum(mean(tmp2,1)); |
52 |
gforget |
1.3 |
%to check divergence implied errors: |
53 |
|
|
%figure; for iF=1:fldU.nFaces; subplot(3,2,iF); plot(std(tmp2{iF},0,1)); end; |
54 |
gforget |
1.2 |
for iF=1:fldU.nFaces; tmp2=tmp1{iF}; tmp1{iF}=tmp2-ones(size(tmp2,1),1)*[0 tmp3{iF}]; end; |
55 |
|
|
bf_step1=tmp1; |
56 |
|
|
|
57 |
gforget |
1.3 |
if fldU.nFaces==1; |
58 |
gforget |
1.4 |
bf_step2=bf_step1; |
59 |
gforget |
1.3 |
else; |
60 |
gforget |
1.2 |
%2) match edges: |
61 |
|
|
%... set face number field |
62 |
|
|
TMP1=tmp1; for iF=1:TMP1.nFaces; TMP1{iF}(:)=iF; end; |
63 |
|
|
TMP2=exch_T_N(TMP1);%!!! this is a trick, since TMP1 is (n+1 X n+1) and loc. at vorticity points |
64 |
|
|
tmp1=bf_step1; |
65 |
|
|
for iF=1:fldU.nFaces-1; |
66 |
|
|
tmp2=exch_T_N(tmp1);%!!! same trick |
67 |
|
|
tmp3=tmp2{iF+1}; tmp3(3:end-2,3:end-2)=NaN;%mask out interior points |
68 |
|
|
TMP3=TMP2{iF+1}; tmp3(find(TMP3>iF+1))=NaN;%mask out edges points coming from unadjusted faces |
69 |
|
|
tmp3(:,1)=tmp3(:,1)-tmp3(:,2); tmp3(:,end)=tmp3(:,end)-tmp3(:,end-1);%compare edge points |
70 |
|
|
tmp3(1,:)=tmp3(1,:)-tmp3(2,:); tmp3(end,:)=tmp3(end,:)-tmp3(end-1,:);%compare edge points |
71 |
|
|
tmp3(2:end-1,2:end-1)=NaN;%mask out remaining interior points |
72 |
|
|
tmp1{iF+1}=tmp1{iF+1}+nanmedian(tmp3(:));%adjust the face data |
73 |
gforget |
1.1 |
end; |
74 |
gforget |
1.2 |
bf_step2=tmp1; |
75 |
gforget |
1.4 |
end; |
76 |
gforget |
1.2 |
%3) put streamfunction at cell center |
77 |
|
|
tmp1=bf_step2; |
78 |
|
|
tmp2=tmp1; for iF=1:tmp1.nFaces; tmp3=tmp2{iF}; tmp3=(tmp3(:,1:end-1)+tmp3(:,2:end))/2; |
79 |
|
|
tmp3=(tmp3(1:end-1,:)+tmp3(2:end,:))/2; tmp2{iF}=tmp3; end; |
80 |
|
|
bf_step3=tmp2; |
81 |
|
|
%4) set 0 on land on average: |
82 |
|
|
tmp1=convert2array(bf_step3); |
83 |
|
|
tmp2=convert2array(mygrid.mskC(:,:,1)); tmp2=find(isnan(tmp2)&~isnan(tmp1)); |
84 |
|
|
tmp2=median(tmp1(tmp2)); if isnan(tmp2); tmp2=nanmedian(tmp1(:)); end; |
85 |
|
|
bf_step4=(bf_step3-tmp2).*mygrid.mskC(:,:,1); |
86 |
gforget |
1.1 |
|
87 |
gforget |
1.2 |
%5) return the result: |
88 |
|
|
fldBAR=bf_step4; |
89 |
gforget |
1.1 |
|
90 |
gforget |
1.7 |
%convert to Sv and change sign: |
91 |
|
|
fldBAR=1e-6*fldBAR; |
92 |
|
|
|