1 |
function []=process2nctiles(dirModel,fileModel,fldModel,tileSize); |
2 |
%process2nctiles(dirModel); |
3 |
%object : convert MITgcm binary output to netcdf files (tiled) |
4 |
%inputs : dirModel is the MITgcm run directory |
5 |
% It is expected to contain binaries in |
6 |
% 'diags/STATE/', 'diags/TRSP/', etc. as well |
7 |
% as the 'available_diagnostics.log' text file. |
8 |
% fileModel the file name base e.g. 'state_2d_set1' |
9 |
% By default : all variables in e.g. 'state_2d_set1*' |
10 |
% files will be processed, and writen individually to |
11 |
% nctiles (tiled netcdf) that will be located in 'nctiles/' |
12 |
% fldModel (by default []) can be specified (as e.g. 'ETAN') |
13 |
% when fldModel is empty, all fields are processed |
14 |
% tileSize (optional) is e.g. [90 90] (by default tiles=faces) |
15 |
%output : (netcdf files) |
16 |
|
17 |
gcmfaces_global; |
18 |
|
19 |
%listFiles={'state_2d_set1','state_2d_set2','state_3d_set1','state_3d_set2'}; |
20 |
%listFiles={'trsp_3d_set1','trsp_3d_set2','trsp_3d_set3'}; |
21 |
%for ff=1:length(listFiles); process2nctiles('iter12/',listFiles{ff},[],[90 90]); end; |
22 |
|
23 |
%replace time series with monthly climatology? |
24 |
doClim=0; |
25 |
|
26 |
%directory names |
27 |
listDirs={'STATE/','TRSP/'};%BUDG? |
28 |
filAvailDiag=[dirModel 'available_diagnostics.log']; |
29 |
filReadme=[dirModel 'README']; |
30 |
dirOut=[dirModel 'nctiles_tmp/']; |
31 |
%dirOut=[dirModel 'nctiles_post_tmp/']; |
32 |
if ~isdir(dirOut); mkdir(dirOut); end; |
33 |
|
34 |
%search in subdirectories |
35 |
subDir=[]; |
36 |
diagsDir='diags/'; |
37 |
%diagsDir='diags_post/'; |
38 |
%diagsDir='diags_interp/'; |
39 |
for ff=1:length(listDirs); |
40 |
tmp1=dir([dirModel diagsDir listDirs{ff} fileModel '*']); |
41 |
if ~isempty(tmp1); subDir=listDirs{ff}; end; |
42 |
end; |
43 |
|
44 |
if isempty(subDir); |
45 |
tmp1=dir([dirModel diagsDir fileModel '/' fileModel '*']); |
46 |
if ~isempty(tmp1); subDir=[fileModel '/']; end; |
47 |
end; |
48 |
|
49 |
if isempty(subDir); |
50 |
error(['file ' fileModel ' was not found']); |
51 |
else; |
52 |
dirIn=[dirModel diagsDir subDir]; |
53 |
nn=length(dir([dirIn fileModel '*data'])); |
54 |
fprintf('%s (%d files) was found in \n %s \n',fileModel,nn,dirIn); |
55 |
end; |
56 |
|
57 |
%set list of variables to process |
58 |
if ~isempty(fldModel); |
59 |
if ischar(fldModel); listFlds={fldModel}; |
60 |
else; listFlds=fldModel; |
61 |
end; |
62 |
else; |
63 |
meta=read_meta([dirIn fileModel '*']); |
64 |
listFlds=meta.fldList; |
65 |
end; |
66 |
|
67 |
%determine map of tile indices (by default tiles=faces) |
68 |
if isempty(whos('tileSize')); |
69 |
tileNo=mygrid.XC; |
70 |
for ff=1:mygrid.nFaces; tileNo{ff}(:)=ff; end; |
71 |
else; |
72 |
tileNo=gcmfaces_loc_tile(tileSize(1),tileSize(2)); |
73 |
end; |
74 |
|
75 |
%now do the actual processing |
76 |
for vv=1:length(listFlds); |
77 |
nameDiag=deblank(listFlds{vv}) |
78 |
|
79 |
%get meta information |
80 |
meta=read_meta([dirIn fileModel '*']); |
81 |
irec=find(strcmp(deblank(meta.fldList),nameDiag)); |
82 |
if length(irec)~=1; error('field not in file\n'); end; |
83 |
|
84 |
%read time series |
85 |
myDiag=rdmds2gcmfaces([dirIn fileModel '*'],NaN,'rec',irec); |
86 |
|
87 |
%replace time series with monthly climatology |
88 |
if doClim; myDiag=compClim(myDiag); end; |
89 |
|
90 |
%set ancilliary time variable |
91 |
nn=length(size(myDiag{1})); |
92 |
nn=size(myDiag{1},nn); |
93 |
%tim=[1:nn]; |
94 |
tim=[1992*ones(nn,1) [1:nn]' 15*ones(nn,1)]; |
95 |
tim=datenum(tim)-datenum([1992 1 0]); |
96 |
timUnits='days since 1992-1-1 0:0:0'; |
97 |
|
98 |
%get time step axis |
99 |
[listTimes]=diags_list_times({dirIn},{fileModel}); |
100 |
|
101 |
%get units and long name from available_diagnostics.log |
102 |
[avail_diag]=read_avail_diag(filAvailDiag,nameDiag); |
103 |
|
104 |
%get description of estimate from README |
105 |
[rdm]=read_readme(filReadme); |
106 |
disp(rdm'); |
107 |
|
108 |
%set output directory/file name |
109 |
myFile=[dirOut nameDiag];%first instance is for subdirectory name |
110 |
if ~isdir(myFile); mkdir(myFile); end; |
111 |
myFile=[myFile filesep nameDiag];%second instance is for file name base |
112 |
|
113 |
%get grid params |
114 |
[grid_diag]=set_grid_diag(avail_diag); |
115 |
|
116 |
%apply mask, and convert to land mask |
117 |
if ~isempty(mygrid.RAC); |
118 |
msk=grid_diag.msk; |
119 |
if length(size(myDiag{1}))==3; |
120 |
msk=repmat(msk(:,:,1),[1 1 size(myDiag{1},3)]); |
121 |
else; |
122 |
msk=repmat(msk,[1 1 1 size(myDiag{1},4)]); |
123 |
end; |
124 |
myDiag=myDiag.*msk; |
125 |
clear msk; |
126 |
% |
127 |
land=isnan(grid_diag.msk); |
128 |
end; |
129 |
|
130 |
%set 'coord' attribute |
131 |
if avail_diag.nr~=1; |
132 |
coord='lon lat dep tim'; |
133 |
else; |
134 |
coord='lon lat tim'; |
135 |
end; |
136 |
|
137 |
%replace time series with monthly climatology |
138 |
if doClim; |
139 |
listTimes=listTimes(1:12); |
140 |
timUnits='days since year-1-1 0:0:0'; |
141 |
avail_diag.longNameDiag=[avail_diag.longNameDiag ' (climatology) ']; |
142 |
end; |
143 |
|
144 |
%create netcdf file using write2nctiles |
145 |
doCreate=1; |
146 |
dimlist=write2nctiles(myFile,myDiag,doCreate,{'tileNo',tileNo},... |
147 |
{'fldName',nameDiag},{'longName',avail_diag.longNameDiag},... |
148 |
{'units',avail_diag.units},{'descr',nameDiag},{'coord',coord},{'rdm',rdm}); |
149 |
|
150 |
%determine relevant dimensions |
151 |
for ff=1:length(dimlist); |
152 |
dim.tim{ff}={dimlist{ff}{1}}; |
153 |
dim.twoD{ff}={dimlist{ff}{end-1:end}}; |
154 |
if avail_diag.nr~=1; |
155 |
dim.threeD{ff}={dimlist{ff}{end-2:end}}; |
156 |
dim.dep{ff}={dimlist{ff}{end-2}}; |
157 |
else; |
158 |
dim.threeD{ff}=dim.twoD{ff}; |
159 |
dim.dep{ff}=[]; |
160 |
end; |
161 |
end; |
162 |
|
163 |
%prepare to add fields |
164 |
doCreate=0; |
165 |
|
166 |
%now add fields |
167 |
write2nctiles(myFile,grid_diag.lon,doCreate,{'tileNo',tileNo},... |
168 |
{'fldName','lon'},{'units','degrees_east'},{'dimIn',dim.twoD}); |
169 |
write2nctiles(myFile,grid_diag.lat,doCreate,{'tileNo',tileNo},... |
170 |
{'fldName','lat'},{'units','degrees_north'},{'dimIn',dim.twoD}); |
171 |
if isfield(grid_diag,'dep'); |
172 |
write2nctiles(myFile,grid_diag.dep,doCreate,{'tileNo',tileNo},... |
173 |
{'fldName','dep'},{'units','m'},{'dimIn',dim.dep}); |
174 |
end; |
175 |
write2nctiles(myFile,tim,doCreate,{'tileNo',tileNo},... |
176 |
{'fldName','tim'},{'longName','time'},... |
177 |
{'units',timUnits},{'dimIn',dim.tim}); |
178 |
if ~isempty(mygrid.RAC); |
179 |
write2nctiles(myFile,listTimes,doCreate,{'tileNo',tileNo},... |
180 |
{'fldName','timstep'},{'longName','final time step number'},... |
181 |
{'units','1'},{'dimIn',dim.tim}); |
182 |
write2nctiles(myFile,grid_diag.msk,doCreate,{'tileNo',tileNo},... |
183 |
{'fldName','land'},{'units','1'},{'longName','land mask'},{'dimIn',dim.threeD}); |
184 |
write2nctiles(myFile,grid_diag.RAC,doCreate,{'tileNo',tileNo},... |
185 |
{'fldName','area'},{'units','m^2'},{'longName','grid cell area'},{'dimIn',dim.twoD}); |
186 |
if isfield(grid_diag,'dz'); |
187 |
write2nctiles(myFile,grid_diag.dz,doCreate,{'tileNo',tileNo},... |
188 |
{'fldName','thic'},{'units','m'},{'dimIn',dim.dep}); |
189 |
end; |
190 |
end; |
191 |
|
192 |
clear myDiag; |
193 |
|
194 |
end;%for vv=1:length(listFlds); |
195 |
|
196 |
function [meta]=read_meta(fileName); |
197 |
|
198 |
%read meta file |
199 |
tmp1=dir([fileName '*.meta']); tmp1=tmp1(1).name; |
200 |
tmp2=strfind(fileName,filesep); |
201 |
if ~isempty(tmp2); tmp2=tmp2(end); else; tmp2=0; end; |
202 |
tmp1=[fileName(1:tmp2) tmp1]; fid=fopen(tmp1); |
203 |
while 1; |
204 |
tline = fgetl(fid); |
205 |
if ~ischar(tline), break, end |
206 |
if isempty(whos('tmp3')); tmp3=tline; else; tmp3=[tmp3 ' ' tline]; end; |
207 |
end |
208 |
fclose(fid); |
209 |
|
210 |
%add meta variables to workspace |
211 |
eval(tmp3); |
212 |
|
213 |
%reformat to meta structure |
214 |
meta.dataprec=dataprec; |
215 |
meta.nDims=nDims; |
216 |
meta.nFlds=nFlds; |
217 |
meta.nrecords=nrecords; |
218 |
meta.fldList=fldList; |
219 |
meta.dimList=dimList; |
220 |
if ~isempty(who('timeInterval')); meta.timeInterval=timeInterval; end; |
221 |
if ~isempty(who('timeStepNumber')); meta.timeStepNumber=timeStepNumber; end; |
222 |
|
223 |
%% |
224 |
|
225 |
function [rdm]=read_readme(filReadme); |
226 |
|
227 |
gcmfaces_global; |
228 |
|
229 |
rdm=[]; |
230 |
|
231 |
fid=fopen(filReadme,'rt'); |
232 |
while ~feof(fid); |
233 |
nn=length(rdm); |
234 |
rdm{nn+1} = fgetl(fid); |
235 |
end; |
236 |
fclose(fid); |
237 |
|
238 |
%% |
239 |
|
240 |
function [avail_diag]=read_avail_diag(filAvailDiag,nameDiag); |
241 |
|
242 |
gcmfaces_global; |
243 |
|
244 |
avail_diag=[]; |
245 |
|
246 |
fid=fopen(filAvailDiag,'rt'); |
247 |
while ~feof(fid); |
248 |
tline = fgetl(fid); |
249 |
tmp1=8-length(nameDiag); tmp1=repmat(' ',[1 tmp1]); |
250 |
tname = ['|' sprintf('%s',nameDiag) tmp1 '|']; |
251 |
if ~isempty(strfind(tline,tname)); |
252 |
%e.g. tline=' 235 |SIatmQnt| 1 | |SM U1|W/m^2 |Net atmospheric heat flux, >0 decreases theta'; |
253 |
% |
254 |
tmp1=strfind(tline,'|'); tmp1=tmp1(end-1:end); |
255 |
avail_diag.units=strtrim(tline(tmp1(1)+1:tmp1(2)-1)); |
256 |
avail_diag.longNameDiag=tline(tmp1(2)+1:end); |
257 |
% |
258 |
tmp1=strfind(tline,'|'); tmp1=tmp1(4:5); |
259 |
pars=tline(tmp1(1)+1:tmp1(2)-1); |
260 |
% |
261 |
if strcmp(pars(2),'M'); avail_diag.loc_h='C'; |
262 |
elseif strcmp(pars(2),'U'); avail_diag.loc_h='W'; |
263 |
elseif strcmp(pars(2),'V'); avail_diag.loc_h='S'; |
264 |
end; |
265 |
% |
266 |
avail_diag.loc_z=pars(9); |
267 |
% |
268 |
if strcmp(pars(10),'1'); avail_diag.nr=1; |
269 |
else; avail_diag.nr=length(mygrid.RC); |
270 |
end; |
271 |
end; |
272 |
end; |
273 |
fclose(fid); |
274 |
|
275 |
%% |
276 |
|
277 |
function [grid_diag]=set_grid_diag(avail_diag); |
278 |
|
279 |
gcmfaces_global; |
280 |
|
281 |
%switch for non-tracer point values |
282 |
if strcmp(avail_diag.loc_h,'C'); |
283 |
grid_diag.lon=mygrid.XC; |
284 |
grid_diag.lat=mygrid.YC; |
285 |
grid_diag.msk=mygrid.mskC(:,:,1:avail_diag.nr); |
286 |
elseif strcmp(avail_diag.loc_h,'W'); |
287 |
grid_diag.lon=mygrid.XG; |
288 |
grid_diag.lat=mygrid.YC; |
289 |
grid_diag.msk=mygrid.mskW(:,:,1:avail_diag.nr); |
290 |
elseif strcmp(avail_diag.loc_h,'S'); |
291 |
grid_diag.lon=mygrid.XC; |
292 |
grid_diag.lat=mygrid.YG; |
293 |
grid_diag.msk=mygrid.mskS(:,:,1:avail_diag.nr); |
294 |
end; |
295 |
grid_diag.RAC=mygrid.RAC; |
296 |
|
297 |
%vertical grid |
298 |
if avail_diag.nr~=1; |
299 |
if strcmp(avail_diag.loc_z,'M'); |
300 |
grid_diag.dep=-mygrid.RC; |
301 |
grid_diag.dz=mygrid.DRF; |
302 |
elseif strcmp(avail_diag.loc_z,'L'); |
303 |
grid_diag.dep=-mygrid.RF(2:end); |
304 |
grid_diag.dz=[mygrid.DRC(2:end) ; 228.25];%quick fix |
305 |
else; |
306 |
error('unknown vertical grid'); |
307 |
end; |
308 |
grid_diag.dep=reshape(grid_diag.dep,[1 1 avail_diag.nr]); |
309 |
grid_diag.dz=reshape(grid_diag.dz,[1 1 avail_diag.nr]); |
310 |
end; |
311 |
|
312 |
%%replace time series with monthly climatology |
313 |
function [FLD]=compClim(fld); |
314 |
|
315 |
gcmfaces_global; |
316 |
|
317 |
ndim=length(size(fld{1})); |
318 |
nyear=size(fld{1},ndim)/12; |
319 |
|
320 |
if ndim==3; FLD=NaN*fld(:,:,1:12); end; |
321 |
if ndim==4; FLD=NaN*fld(:,:,:,1:12); end; |
322 |
|
323 |
for mm=1:12; |
324 |
if ndim==3; FLD(:,:,mm)=mean(fld(:,:,mm:12:12*nyear),ndim); end; |
325 |
if ndim==4; FLD(:,:,:,mm)=mean(fld(:,:,:,mm:12:12*nyear),ndim); end; |
326 |
end; |
327 |
|