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Abstract

gcmfaces (Forget et al., 2015) is a Matlab toolbox that handles gridded earth variables in generic
fashion so that compact analysis codes become applicable to a wide variety of grids (e.g., Fig. 1).
MITprof (Forget et al., 2015) is a companion toolbox for handling unevenly distributed in-situ
observations. This note provides an installation guide for both toolboxes (section 1), a doc-
umentation of basic gcmfaces features (sections 2), and user guidance regarding higher-level
gcmfaces functionalities such as mapping and transport computations (sections 3 and 4).
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Figure 1: Four approaches to gridding the Earth which are all commonly used in numerical models.
Top left: lat-lon grid; mapping the Earth to a single rectangular array (‘face’). Top right: cube-sphere
grid; mapping the earth to the six faces of a cube. Bottom right: lat-lon-cap, ‘LLC’, grid (five faces).
Bottom left: quadripolar grid (four faces). In this depiction, faces are color-coded, only grid line subsets
are shown, and gaps are introduced between faces to highlight the defining characteristics of each grid.
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1 Install And Get Started1

1.1 Software Installation2

The recommended approach consists in downloading the latest gcmfaces and MITprof software3

version from github via https://github.com/gaelforget. The code can be downloaded either via4

a web-browser by using the github interface or via the command line by typing:5

git clone https://github.com/gaelforget/gcmfaces6

git clone https://github.com/gaelforget/MITprof7

It can later be updated, e.g., by typing git pull at the command line.8

Alternatively, if needed, earlier versions of the code can be downloaded directly from9

c66b gcmfaces.tar and c66b MITprof.tar or via the MITgcm CVS server where the initial devel-10

opment phase, through 2016, is documented. In the latter case, one logs into the MITgcm CVS11

server as explained @ http://mitgcm.org/public/using cvs.html and then types:12

cvs co -P -r checkpoint66b -d gcmfaces MITgcm_contrib/gael/matlab_class13

cvs co -P -r checkpoint66b -d MITprof MITgcm_contrib/gael/profilesMatlabProcessing14

1.2 Data Downloads15

To get started (sections 1.3 and 2) one downloads the LLC90 grid (‘nctiles grid/’; 145M) either16

from the MIT ftp server or from its Dataverse permanent archive. To illustrate higher-level func-17

tions, sections 3 and 4 rely on the ECCO v4 r2 ocean state estimate (Forget et al., 2016) directo-18

ries as shown in Fig. 2. The relevant files can be downloaded from the Dataverse permanent archive19

or from the MIT ftp server, e.g., using commands reported in Fig. 3.20

Downloading ‘nctiles climatology/’ (10G), ‘nctiles grid/’ (145M), and the Matlab code (gcmfaces,21

MITprof, and m_map) suffices for the basic purposes of section 3 and 4. The files in ‘profiles/’ (7G)22

and ‘nctiles remotesensing/’ (27G)allow for model-data comparisons. The ‘nctiles monthly/’ di-23

rectory contains the full 1992-2011 ECCO v4 r2 monthly time series (170G) and can be used to24

reproduce the Forget et al. (2016) plots as explained in section 4.25

1.3 Get Started26

Once ‘gcmfaces/’, ‘MITprof/’, and ‘nctiles grid/’ have been placed in a common directory (‘./’27

in Fig. 2), one may simply open Matlab from that directory and type:28

%add gcmfaces and MITprof directories to Matlab path:29

p = genpath('gcmfaces/'); addpath(p);30

p = genpath('MITprof/'); addpath(p);31

32

%load all grid variables from nctiles_grid/ into mygrid:33

grid_load;34

35

%make mygrid accessible in current workspace:36

gcmfaces_global;37

38
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%display list of grid variables:39

disp(mygrid);40

41

%display one gcmfaces variable:42

disp(mygrid.XC);43

44

Figure 2: Directory structure that allows users to execute Matlab code snippets provided in this user
guide. The basic gcmfaces installation only requires the gcmfaces/, MITprof/, and nctiles grid/

directories (see section 1 for details). The m map toolbox that gcmfaces relies on for geographic projections
is available at https://www.eoas.ubc.ca/∼rich/map.html. The release2 climatology/, and release2/

directories serve to demonstrate higher-level functions in sections 3 and 4.

./

gcmfaces/ (Matlab toolbox)

MITprof/ (Matlab toolbox)

m map/ (Matlab toolbox)

nctiles grid/ (netcdf files)

release2 climatology/

nctiles climatology/

mat/ (see section 5)

tex/ (see section 5)

release2/

nctiles monthly/

nctiles remotesensing/)

profiles/

mat/ (see section 5)

tex/ (see section 5)

Figure 3: Commands to download ECCO v4 r2 (Forget et al., 2016) files used in sections 3-4.

setenv FTPv4r2 'ftp://mit.ecco-group.org/ecco_for_las/version_4/release2/'

#export FTPv4r2='ftp://mit.ecco-group.org/ecco_for_las/version_4/release2/'

wget --recursive {$FTPv4r2}/nctiles_grid

wget --recursive {$FTPv4r2}/nctiles_climatology

wget --recursive {$FTPv4r2}/nctiles_monthly

wget --recursive {$FTPv4r2}/nctiles_remotesensing

wget --recursive {$FTPv4r2}/profiles
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2 The Basic gcmfaces Features45

The core of gcmfaces lies in its handling of connected arrays/faces via a new Matlab class/variable46

type (section 2.1) and its handling of C-Grid specifications via the mygrid global variable (sec-47

tion 2.2). Basic features of gcmfaces also include functions that ‘exchange’ data between faces48

(section 2.3), ‘overloaded’ operations (section 2.4), and I/O functions (section 2.5). gcmfaces49

functions are normally documented via help sections that are accessible within Matlab.50

2.1 The gcmfaces Class51

Fig. 1 illustrates four types of grids that are commonly used in general circulation models52

(GCMs). Despite evident design differences, these grids can all be represented as sets of con-53

nected arrays (‘faces’) as illustrated in Fig. 4 for the LLC90 grid. gcmfaces simply takes54

advantage of this fact by defining an additional Matlab class, within @gcmfaces/, to represent55

gridded earth variables generically as sets of connected arrays.56

Grid specifics, such as the number of faces and grid points, are embedded within gcmfaces57

objects as illustrated in Table 1. Objects of the gcmfaces class can thus be manipulated simply58

through compact and generic expressions such as ‘a+b’ that are robust to changes in grid design59

(Fig. 1). The gcmfaces class inherits many of its basic operations (see section 2.4 for details)60

from the ‘double’ class as illustrated in Table 2 for @gcmfaces/plus.m .61

Table 1: Earth variable on the LLC90 grid (Fig. 1, bottom right) represented as an object of the gcmfaces
class (@gcmfaces/). The five face arrays (going from f1 to f5) are depicted in Fig. 4 accordingly.

fld =
nFaces: 5

f1: [90x270 double]
f2: [90x270 double]
f3: [90x90 double]
f4: [270x90 double]
f5: [270x90 double]

2.2 C-Grid Variables62

In practice the gcmfaces framework gets activated by adding, to the least, the @gcmfaces/ direc-63

tory to the Matlab path and then loading a grid to memory as done in section 1.3. The default,64

LLC90, grid can be loaded to memory by calling grid load.m without any argument. ‘help65

grid load.m’ and section 2.5 provide additional information regarding, respectively grid load.m66

arguments and supported file formats. Alternatively, grids can be read from MITgcm input files67

using grid load native.m as shown in this webpage (see README and demo grids.m).68

grid load.m and grid load native.m store all C-grid variables at once in a global variable69

named mygrid (Tab. 3). gcmfaces functions often rely on mygrid that they access via a call to70

gcmfaces global.m which also provides system information via myenv. If these global variables71
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Table 2: The ‘+’ operation as defined for gcmfaces objects by @gcmfaces/plus.m. In executing com-
mands such as ‘a+b’, Matlab will use @gcmfaces/plus.m if either ‘a’ or ‘b’ is of the gcmfaces class.

function r = plus(p,q)

%overloaded gcmfaces `+' function :

% simply calls double `+' function for each face data

% if any of the two arguments is a gcmfaces object

if isa(p,'gcmfaces'); r=p; else; r=q; end;

for iFace=1:r.nFaces;

iF=num2str(iFace);

if isa(p,'gcmfaces')&isa(q,'gcmfaces');

eval(['r.f' iF '=p.f' iF '+q.f' iF ';']);

elseif isa(p,'gcmfaces')&isa(q,'double');

eval(['r.f' iF '=p.f' iF '+q;']);

elseif isa(p,'double')&isa(q,'gcmfaces');

eval(['r.f' iF '=p+q.f' iF ';']);

else;

error('gcmfaces plus: types are incompatible')

end;

end;
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get deleted, typically by a ‘clear all’, then another call to grid load.m is generally needed.72

gcmfaces global.m will indicate this situation to the user by issuing warnings that ‘mygrid has73

not yet been loaded to memory’.74

Table 3: List of grid variables available via the mygrid global variable. The naming convention is directly
inherited from the MITgcm naming convention. For details, see sections 2.11 and 6.2.4 in
http://mitgcm.org/public/r2 manual/latest/online documents/manual.pdf

XC : [1x1 gcmfaces] longitude (tracer)
YC : [1x1 gcmfaces] latitude (tracer)
RC : [50x1 double] depth (tracer)

XG : [1x1 gcmfaces] longitude (vorticity)
YG : [1x1 gcmfaces] latitude (vorticity)
RF : [51x1 double] depth (velocity along 3rd dim)

DXC : [1x1 gcmfaces] grid spacing (tracer, 1st dim)
DYC : [1x1 gcmfaces] grid spacing (tracer, 2nd dim)
DRC : [50x1 double] grid spacing (tracer, 3nd dim)
RAC : [1x1 gcmfaces] grid cell area (tracer)

DXG : [1x1 gcmfaces] grid spacing (vorticity, 1st dim)
DYG : [1x1 gcmfaces] grid spacing (vorticity, 2nd dim)
DRF : [50x1 double] grid spacing (velocity, 3nd dim)
RAZ : [1x1 gcmfaces] grid cell area (vorticity)

AngleCS : [1x1 gcmfaces] grid orientation (tracer, cosine)
AngleSN : [1x1 gcmfaces] grid orientation (tracer, cosine)

Depth : [1x1 gcmfaces] ocean bottom depth (tracer)
hFacC : [1x1 gcmfaces] partial cell factor (tracer)
hFacS : [1x1 gcmfaces] partial cell factor (velocity, 2nd dim)
hFacW : [1x1 gcmfaces] partial cell factor (velocity, 1rst dim)

The C-grid variable names listed in Tab. 3 derive from the MITgcm1. In brief, XC, YC,75

and RC denote longitude, latitude, and vertical position of tracer variable locations. DXC,76

DYC, DRC and RAC are the corresponding grid spacings, in m, and grid cell areas, in m2. A77

different set of such variables (XG, YG, RF, DXG, DYG, DRF, RAZ) corresponds to velocity78

and vorticity variables that are staggered in a C-grid approach1.79

Indexing and vector orientation conventions also derive from the MITgcm1. The indexing80

convention is illustrated in Fig. 4. For vector fields, the first component (U) is directed toward81

the right of the page and the second component (V) toward the top of the page. As compared82

with tracers, velocity variable locations are shifted by half a grid point to the left of the page83

(U components) or the bottom of the page (V components) following the C-grid approach1.84

2.3 Exchange Functions85

Many computations of interest (e.g., gradients and flow convergences) involve values from con-86

tiguous grid points on neighboring faces. In practice rows and columns need to be appended at87

1For details, see sections 2.11 and 6.2.4 in http://mitgcm.org/public/r2 manual/latest/online documents/manual.pdf
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each face edge that are ‘exchanged’ between neighboring faces – e.g., rows and columns from88

faces #2, #3, and #5 at the face #1 edges in Fig. 4. Exchanges are operated by exch T N.m for89

tracer-type variables and by exch UV N.m for velocity-type variables. They are used to compute90

gradients (calc T grad.m and flow convergences (calc UV conv.m) in sections 3 and 4.91

2.4 Overloaded Functions92

As illustrated for the ‘+’ operation in Table 2, common functions are overloaded as part of the93

gcmfaces class definition within the @gcmfaces/ directory:94

1. Logical operators: and, eq, ge, gt, isnan, le, lt, ne, not, or.95

2. Numerical operators: abs, angle, cat, cos, cumsum, diff, exp, imag, log2, max,96

mean, median, min, minus, mrdivide, mtimes, nanmax, nanmean, nanmedian, nanmin,97

nanstd, nansum, plus, power, rdivide, real, sin, sqrt, std, sum, tan, times,98

uminus, uplus.99

3. Indexing operators: subsasgn, subsref, find, get, set, squeeze, repmat.100

It may be worth highlighting @gcmfaces/subsasgn.m (subscripted assignment) and101

@gcmfaces/subsref.m (subscripted reference) since they overload some of the most commonly102

used Matlab functions. For example, if fld is of the ‘double’ class then ‘tmp2=fld(1);’ and103

‘fld(1)=1;’ call subsref.m and subsasgn.m, respectively. If fld instead is of the gcmfaces class104

then @gcmfaces/subsref.m behaves as follows:105

fld{n} returns the n^{th} face data (i.e., an array).106

fld(:,:,n) returns the n^{th} vertical level (i.e., a gcmfaces object).107

and @gcmfaces/subsasgn.m behaves similarly but for assignments.108

2.5 I/O Functions109

Objects of the gcmfaces class can readily be saved to file using Matlab’s proprietary I/O format110

(‘.mat’ files). Reloading them in a later Matlab session works seamlessly as long as the gcmfaces111

class has been defined by including @gcmfaces/ in the Matlab path.112

Alternatively, gcmfaces variables can be written to files in the ‘nctiles’ format (Forget et al.,113

2015). Illustrations in this user guide rely upon ECCO v4 fields which are distributed in114

this format (see section 1.2; Figs. 2-3). The I/O functions provided as part of gcmfaces115

(write2nctiles.m and read nctiles.m) reformat data on the fly.116

gcmfaces can also read MITgcm binary output in the ‘mds’ format2. The provided I/O117

functions (rdmds2gcmfaces.m and read bin.m) rely on convert2gcmfaces.m to reformat data118

on the fly. gcmfaces thus readily provides a common tool to analyze any of the ECCO solutions119

as illustrated in this webpage (see README and demo grids.m).120

2For details, see section 7.3 in http://mitgcm.org/public/r2 manual/latest/online documents/manual.pdf
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3 The gcmfaces demo.m Tutorial121

To proceed further, user should have completed the installation procedure in section 1.3 including122

for nctiles climatology/ and m map/. To illustrate gcmfaces capabilities, gcmfaces demo.m123

can then be executed by opening Matlab and typing124

p = genpath('gcmfaces/'); addpath(p);125

p = genpath('m_map/'); addpath(p);126

gcmfaces_demo;127

As prompted by gcmfaces_demo.m , users specify the desired amount of explanatory text128

output. gcmfaces_demo.m then proceeds various the examples while displaying comments129

in the Matlab command window. The Matlab GUI and debugger can also be used to run the130

examples line by line to learn more about the inner workings of gcmfaces functions.131

The first section in gcmfaces demo.m illustrates I/O and plotting capabilities (grid load.m132

and example display.m). gcmfaces relies on m map) for map projections via the m map gcmfaces133

front-end that typically produces Fig. 5. The second section in gcmfaces demo.m focuses on data134

processing capabilities such as interpolation (example interp.m) and smoothing (example smooth.m).135

example interp.m interpolates gcmfaces fields to a lat-lon grid and vice versa. example smooth.m136

integrates a diffusion equation which involves tracer gradient and flux convergence computations.137

The final section in gcmfaces demo.m computes oceanic transports (example transports.m).138

4 The gcmfaces diags/ Standard Analysis139

The gcmfaces ‘standard analysis’ consists of an extensive set of physical diagnostics that are140

routinely computed to monitor and compare MITgcm simulations and ECCO state estimates141

(e.g., Forget et al., 2015, 2016). The computational loop is operated by diags driver.m which142

expects stores results in a dedicated directory (mat/ in Fig. 2). Afterwards, the display phase143

is normally carried out via diags display.m or diags driver tex.m as explained below.144

At this point, users should have completed the installation procedure in section 1.3 including145

for nctiles_climatology/ and m_map/ and organized directories as shown in Fig. 2. They can146

then generate and display variance maps (setDiags=’B’ encoded in diags_set_B.m ) from the147

ECCO v4 monthly mean climatology (12 monthly fields) by opening Matlab and typing:148

%add paths:149

p = genpath('gcmfaces/'); addpath(p);150

p = genpath('MITprof/'); addpath(p);151

p = genpath('m_map/'); addpath(p);152

153

%set parameters:154

dirModel='release2_climatology/';155

dirMat=[dirModel 'mat/'];156

setDiags='B';157

158

%compute diagnostics:159

diags_driver(dirModel,dirMat,'climatology',setDiags);160
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161

%display results:162

diags_display(dirMat,setDiags);163

which takes ≈ 5 minutes. Each generated plot has a caption that indicates the quantity being164

displayed. Results of diags driver.m can, alternatively, be displayed via diags driver tex.m165

to save plots and create a compilable tex file. This process takes ≈10 minutes:166

dirTex=[dirModel 'tex/']; nameTex='standardAnalysis';167

diags_driver_tex(dirMat,{},dirTex,nameTex);168

Other diagnostic sets can be computed and displayed accordingly by modifying the ‘setDiags’169

specification: oceanic transports (‘A’), mean and variance maps (‘B’), sections and time series170

(‘C’), and mixed layer depths (‘MLD’). Each set of diagnostics (computation and display) is171

encoded in one routine named as ‘diags set XX.m’ where ‘XX’ stands for e.g., ‘A’, ‘B’, ‘C’, or172

‘MLD’. These routines can be found in the gcmfaces diags/ subdirectory.173

Computing these four diagnostic sets from ECCO v4 r2 climatology takes ≈1/2 hour. Com-174

puting them from the 1992-2011 monthly time series (nctiles monthly/ in Fig. 2) per175

dirModel='release2/'; dirMat=[dirModel 'mat/'];176

diags_driver(dirModel,dirMat,[1992:2011]);177

takes ≈ 20 times longer and typically runs overnight. However, to speed up the process, com-178

putation can be distributed over multiple processors by splitting [1992:2011] into subsets.179
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Figure 4: Ocean topography on the LLC90 grid (Fig. 1, bottom right) displayed face by face (going
from 1 to 5). This plot generated using example display(1) illustrates how gcmfaces organizes data in
memory (Tab. 1). Within each face, grid point indices increase from left to right and bottom to top.
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Figure 5: Same as Fig. 4 but plotted in geographical coordinates using m map gcmfaces.m. This plot is
generated by calling example display(4).
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