
gcmfaces

a Matlab framework for the
analysis of gridded earth variables

Gäel Forget

Dept. of Earth, Atmospheric and Planetary Sciences

Massachusetts Institute of Technology

Cambridge MA 02139 USA

May 2, 2016

Contents

1 Download And Update 3

1.1 download frozen copies . 3

1.2 use the MITgcm CVS server 3

1.3 getting started with gcmfaces 4

2 The gcmfaces class 7

3 Basic Features 10

3.1 Grid Variables . 10

3.2 Exchange Functions . 12

3.3 Overloaded Functions . 12

3.4 I/O Functions . 13

4 Tutorial 14

5 Standard Analysis 17

Summary

gcmfaces is a Matlab toolbox designed to handle gridded earth variables;

results of MITgcm ocean simulations originally (Forget et al., 2015). It al-

lows users to seamlessly deal with various gridding approaches (e.g. see

Fig. 2) using compact and generic codes. It includes many basic and more

evolved functionalities such as plotting global maps, computing transports,

and budgets. MITprof is a complementary toolbox designed to handle in-situ

ocean observations (Forget et al., 2015). This document provides guidelines

to download, update, and activate the software (section 1), documents basic

design and features of gcmfaces (sections 2 and 3), and briefly describes

higher level gcmfaces functionalities (sections 4 and 5).

1

gcmfaces
MITgcm
MITprof
gcmfaces
gcmfaces

References

Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and

C. Wunsch, 2015: ECCO version 4: an integrated framework for non-

linear inverse modeling and global ocean state estimation. Geoscientific

Model Development, 8 (10), 3071–3104, doi:10.5194/gmd-8-3071-2015,

URL http://www.geosci-model-dev.net/8/3071/2015/.

Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte,

and C. Wunsch, 2016: ECCO version 4: Second release. URL

http://hdl.handle.net/1721.1/102062.

Disclaimer

Users of the gcmfaces software are kindly asked to include a reference to

Forget et al. (2015) when publishing results that rely on gcmfaces . The

free software programs may be freely distributed, provided that no charge is

levied, and that the disclaimer below is always attached to it. The programs

are provided as is without any guarantees or warranty. Although the authors

have attempted to find and correct any bugs in the free software programs, the

authors are not responsible for any damage or losses of any kind caused by the

use or misuse of the programs. The authors are under no obligation to provide

support, service, corrections, or upgrades to the free software programs.

2

http://www.geosci-model-dev.net/8/3071/2015/
http://hdl.handle.net/1721.1/102062
gcmfaces
gcmfaces

1 Download And Update1

There are currently two ways to download gcmfaces and MITprof:2

1. download frozen copies: arguably the simplest method that will work3

in all common computing environments (Linux, iOS, MS-windows).4

2. use the MITgcm CVS server: this is the recommended method under5

Linux and iOS (assuming CVS was installed) since it has the major6

advantage that the codes can later easily be updated.7

This section documents both methods and the activation of gcmfaces.8

1.1 download frozen copies9

Frozen copies of gcmfaces and MITprof are available at10

ftp://mit.ecco-group.org/ecco for las/version 4/checkpoints/11

Download the latest versions1, uncompress and untar them. Then add12

these two toolboxes to your Matlab path as explained in section 1.3.13

1.2 use the MITgcm CVS server14

Login to the MITgcm CVS server as explained in this page2 then download15

the up to date versions of gcmfaces and MITprof by typing16

cvs co -P -d gcmfaces MITgcm_contrib/gael/matlab_class17

cvs co -P -d MITprof MITgcm_contrib/gael/profilesMatlabProcessing18

All past and future evolutions of the codes can be traced using the cvs ver-19

sion control system. To update an existing copy of the codes and take advan-20

tage of the latest developments one goes inside a directory and types ‘cvs up-21

1c65v gcmfaces.tar.gz and c65v MITprof.tar.gz at the time of writing.
2http://mitgcm.org/public/using cvs.html

3

gcmfaces
MITprof
MITgcm
gcmfaces
gcmfaces
MITprof
ftp://mit.ecco-group.org/ecco_for_las/version_4/checkpoints/
MITgcm
http://mitgcm.org/public/using_cvs.html
gcmfaces
MITprof
cvs

date -P -d’ at the command line. If you are new to cvs then you may want to22

read about the update command at http://mitgcm.org/public/using cvs.html.23

1.3 getting started with gcmfaces24

Download toolboxes as explained above and the LLC90 grid (see Forget et al.,25

2015) directory from this location3, organize directories as depicted in Fig. 1,26

start Matlab, go to the root directory indicated as ‘./’ in Fig. 1, and type:27

%add gcmfaces and MITprof directories to Matlab path:28

p = genpath('gcmfaces/'); addpath(p);29

p = genpath('MITprof/'); addpath(p);30

31

%load nctiles_grid in memory:32

grid_load;33

34

%displays list of grid variables:35

gcmfaces_global; disp(mygrid);36

The applications in sections 4 and 5 further require downloading37

ftp://mit.ecco-group.org/ecco for las/version 4/release2/nctiles climatology/38

or ftp://mit.ecco-group.org/ecco for las/version 4/release2/nctiles monthly/39

and the m_map plotting toolbox from (https://www.eoas.ubc.ca/∼rich/map.html).40

3ftp://mit.ecco-group.org/ecco for las/version 4/release2/nctiles grid/

4

cvs
http://mitgcm.org/public/using_cvs.html
ftp://mit.ecco-group.org/ecco_for_las/version_4/release2/nctiles_grid/
ftp://mit.ecco-group.org/ecco_for_las/version_4/release2/nctiles_climatology/
ftp://mit.ecco-group.org/ecco_for_las/version_4/release2/nctiles_monthly/
m_map
https://www.eoas.ubc.ca/~rich/map.html

Figure 1: Directory structure that allows users to execute Matlab code

snippets provided in this document. The most basic gcmfaces installa-

tion only requires the ‘gcmfaces/’, ‘MITprof/’, and ‘nctiles grid/’ directo-

ries (see section 1 for details). The ‘m map’ and ‘nctiles climatology/’ (or

‘nctiles monthly/’) directories serve to demonstrate higher-level functions in

sections 4 and 5. The ‘nctiles climatology/’ directory (10G) contains the

monthly mean climatology of the ECCO version 4, release 2 state estimate

(Forget et al., 2016). The ‘nctiles monthly/’ directory (170G) contains the

corresponding 1992-2011 monthly time series and allows users to reproduce

the bulk of the state estimate depiction reported in Forget et al. (2016).

./

gcmfaces/ (Matlab toolbox)

MITprof/ (Matlab toolbox)

m map/ (Matlab toolbox)

nctiles grid/ (netcdf files)

release2 climatology/

nctiles climatology/ (netcdf files)

mat/ (see section 5)

tex/ (see section 5)

release2 monthly/

nctiles monthly/ (netcdf files)

mat/ (see section 5)

tex/ (see section 5)

5

Figure 2: Four different ways of gridding the earth. Top left: lat-lon grid,

mapping the earth to a single rectangular array (‘face’). Top right: cube-

sphere grid, mapping the earth to the six faces of a cube. Bottom right:

lat-lon-cap ‘LLC’ grid (five faces). Bottom left: quadripolar grid (four faces).

Faces are color-coded, and the ocean topography underlaid. Only a subset

of the grid lines are shown in this depiction, which furthermore artificially

shows gaps between faces to magnify face edges.

6

2 The gcmfaces class41

The basic motivation for developing gcmfaces was to provide a unified frame-42

work that allows for analysis of earth variables on various grids. Fig. 2 shows43

four types of grids that are commonly used in ocean general circulation mod-44

els (GCMs). Despite evident differences in GCM grid designs, such grids can45

all be represented as sets of connected arrays (‘faces’). This fact is illustrated46

in Fig. 3 for the LLC90 grid (bottom right panel in Fig. 2) that is used in47

ECCO v4 (Forget et al., 2015).48

The core of gcmfaces lies in its definition (in the ‘@gcmfaces/’ subdi-49

rectory) of an additional Matlab data type (‘class’) that represents gridded50

earth variables as sets of connected arrays. An object of the gcmfaces class51

is stored in memory as shown in Table 1. The gcmfaces class inherits many52

of its basic operations (e.g., ‘+’) from the ‘double’ class as illustrated by53

@gcmfaces/plus.m in Table 2. Objects of the gcmfaces class can thus be54

manipulated simply through compact and generic expressions such as ‘a+b’55

that are robust to changes in grid design (see section 3.3 for details).56

Table 1: Gridded variable represented using the gcmfaces class. In this case

the LLC90 grid (Fig. 2, bottom right) is used that has five faces (f1 to f5).

fld =

nFaces: 5

f1: [90x270 double]

f2: [90x270 double]

f3: [90x90 double]

f4: [270x90 double]

f5: [270x90 double]

7

gcmfaces
gcmfaces
gcmfaces
gcmfaces
@gcmfaces/plus.m
gcmfaces

Table 2: The ‘+’ operation for gcmfaces objects (@gcmfaces/plus.m).

function r = plus(p,q)

%overloaded gcmfaces `+' function :

% simply calls double `+' function for each face data

% if any of the two arguments is a gcmfaces object

if isa(p,'gcmfaces'); r=p; else; r=q; end;

for iFace=1:r.nFaces;

iF=num2str(iFace);

if isa(p,'gcmfaces')&isa(q,'gcmfaces');

eval(['r.f' iF '=p.f' iF '+q.f' iF ';']);

elseif isa(p,'gcmfaces')&isa(q,'double');

eval(['r.f' iF '=p.f' iF '+q;']);

elseif isa(p,'double')&isa(q,'gcmfaces');

eval(['r.f' iF '=p+q.f' iF ';']);

else;

error('gcmfaces plus: types are incompatible')

end;

end;

8

Figure 3: Ocean topography displayed face by face for the LLC90 grid (Fig. 2,

bottom right). The face indices (from 1 to 5) are overlaid in red. Within

each face, grid point indices increase from left to right and bottom to top in

this view that reflects the data organization in memory (Tab. 1). This plot

is generated by calling ‘example display(1)’.

1

20 40 60 80

50

100

150

200

250

2

20 40 60 80

50

100

150

200

250

3

20 40 60 80

20

40

60

80

4

50 100 150 200 250

20

40

60

80

5

50 100 150 200 250

20

40

60

80

9

3 Basic Features57

The representation of grid variables in memory is documented in section 3.1.58

Other key features of gcmfaces are ‘exchange’ functions that implement con-59

nections between faces (section 3.2) and ‘overloaded’ operations (section 3.3).60

I/O functions are discussed in section 3.4.61

3.1 Grid Variables62

In practice the gcmfaces framework gets activated by adding its directories63

to the Matlab path and loading a grid in memory using the grid_load.m64

function as done in sections 1.3. The default grid (LLC90) can be loaded in65

memory through a call to grid_load.m without any argument. For other66

grids, grid_load.m arguments need to be specified as explained by ‘help67

grid load.m’. grid_load.m stores all grid variables in memory within a68

global structure named mygrid (Tab.3).69

mygrid can be accessed within Matlab at any point by declaring it as70

‘global mygrid;’ or using gcmfaces_global.m . The latter method addition-71

ally: (1) issues a warning when ‘mygrid has not yet been loaded to memory’;72

provides a few environment variables via myenv; adds gcmfaces directories73

to the path if needed. It should be stressed that gcmfaces functions often74

rely on mygrid and myenv. If they get deleted from memory (e.g., by a ‘clear75

all’) then a call to grid_load.m will re-activate gcmfaces properly.76

The C-grid variable names listed in Tab.3 follow the MITgcm naming77

convention (see sections 2.11 and 6.2.4 in the MITgcm documentation4). In78

brief, XC, YC and RC denote longitude, latitude and vertical position of79

tracer variables. DXC, DYC, DRC and RAC are the corresponding grid80

spacings (in m) and grid cell areas (in m2). Another set of such fields (XG,81

4http://mitgcm.org/public/r2 manual/latest/online documents/manual.pdf

10

gcmfaces
gcmfaces
grid_load.m
grid_load.m
grid_load.m
grid_load.m
mygrid
mygrid
gcmfaces_global.m
myenv
gcmfaces
gcmfaces
mygrid
myenv
grid_load.m
gcmfaces
http://mitgcm.org/public/r2_manual/latest/online_documents/manual.pdf

Table 3: List of grid variables contained in the mygrid global structure. The

naming convention are directly inherited from the MITgcm. For details, see:

http://mitgcm.org/public/r2 manual/latest/online documents/manual.pdf

XC : [1x1 gcmfaces] longitude (tracer)

YC : [1x1 gcmfaces] latitude (tracer)

RC : [50x1 double] depth (tracer)

XG : [1x1 gcmfaces] longitude (vorticity)

YG : [1x1 gcmfaces] latitude (vorticity)

RF : [51x1 double] depth (velocity along 3rd dim)

DXC : [1x1 gcmfaces] grid spacing (tracer, 1st dim)

DYC : [1x1 gcmfaces] grid spacing (tracer, 2nd dim)

DRC : [50x1 double] grid spacing (tracer, 3nd dim)

RAC : [1x1 gcmfaces] grid cell area (tracer)

DXG : [1x1 gcmfaces] grid spacing (vorticity, 1st dim)

DYG : [1x1 gcmfaces] grid spacing (vorticity, 2nd dim)

DRF : [50x1 double] grid spacing (velocity, 3nd dim)

RAZ : [1x1 gcmfaces] grid cell area (vorticity)

AngleCS : [1x1 gcmfaces] grid orientation (tracer, cosine)

AngleSN : [1x1 gcmfaces] grid orientation (tracer, cosine)

Depth : [1x1 gcmfaces] ocean bottom depth (tracer)

hFacC : [1x1 gcmfaces] partial cell factor (tracer)

hFacS : [1x1 gcmfaces] partial cell factor (velocity, 2nd dim)

hFacW : [1x1 gcmfaces] partial cell factor (velocity, 1rst dim)

11

http://mitgcm.org/public/r2_manual/latest/online_documents/manual.pdf

YG, RF, DXG, DYG, DRF, RAZ) is necessary to complete the C-grid spec-82

ification where velocity variables are shifted compared with tracer variables.83

The indexing and vector conventions also derive from the MITgcm. The84

indexing convention is illustrated for the LLC90 grid in Fig. 3. For a vector85

field the first component (U) points straight to the right of the page in Fig. 3,86

whereas the second component (V) points strait to the top of the page. The87

location of U components are shifted by half a grid point towards the left of88

the page, while the location of V components are shifted by half a grid point89

towards the bottom of the page (reflecting the C-grid approach).90

3.2 Exchange Functions91

Many quantities of interest (e.g., gradients and flow convergences) involve92

values from neighboring grid points that often need to be ‘exchanged’ between93

faces. This is achieved in practice by appending rows and columns at the94

sides of each face that are obtained from the neighboring faces – appending95

rows and columns from faces #2, #3, and #5 at the sides of face #1 in the96

Fig. 3 example. These exchanges are operated by exch_T_N.m for tracer97

fields and by exch_UV_N.m for velocity fields. These functions are needed for98

example to compute gradients (with calc_T_grad.m) and flow convergences99

(with calc_UV_conv.m) in sections 4 and 5.100

3.3 Overloaded Functions101

Table 2 depicts the overloading of the ‘+’ operation by @gcmfaces/plus.m .102

In executing commands such as ‘fld+1’, Matlab will select @gcmfaces/plus.m103

if one of the arguments of ‘+’ is of the gcmfaces class. Many common oper-104

ations and functions are similarly overloaded in the ‘@gcmfaces/’ directory105

that defines the gcmfaces class and its operations:106

1. Logical operators: and, eq, ge, gt, isnan, le, lt, ne, not, or107

12

MITgcm
exch_T_N.m
exch_UV_N.m
calc_T_grad.m
calc_UV_conv.m
@gcmfaces/plus.m
@gcmfaces/plus.m
gcmfaces
gcmfaces

2. Numerical operators: abs, angle, cat, cos, cumsum, diff, exp, imag,108

log2, max, mean, median, min, minus, mrdivide, mtimes, nanmax,109

nanmean, nanmedian, nanmin, nanstd, nansum, plus, power, rdivide,110

real, sin, sqrt, std, sum, tan, times, uminus, uplus.111

3. Indexing operators: subsasgn, subsref, find, get, set, squeeze, repmat.112

It is worth mentioning the case of @gcmfaces/subsasgn.m (subscripted113

assignment) and @gcmfaces/subsref.m (subscripted reference) since they114

are some of the most commonly used Matlab functions. For example, if115

fld is of the ‘double’ class then ‘tmp2=fld(1);’ and ‘fld(1)=1;’ respectively116

call subsref.m and subsasgn.m. If fld instead is of the gcmfaces class then117

@gcmfaces/subsref.m behaves as follows:118

fld{n} returns the n^{th} face data (i.e. an array).119

fld(:,:,n) returns the n^{th} vertical level (i.e. a gcmfaces).120

And @gcmfaces/subsasgn.m behaves similarly but for assignments. The121

variables in Table 1 can also be accessed ‘manually’. For example:122

fld.nFaces returns the nFaces attribute (double).123

fld.f1 returns the face #1 array (double).124

3.4 I/O Functions125

Objects of the gcmfaces class can simply be saved to or read from file in Mat-126

lab’s own I/O format (‘.mat’ files). An alternative is to use convert2array.m127

or convert2gcmfaces.m to re-organize the faces data into one array (or vice128

versa) that can readily be written to or read from binary files. The other129

file formats that are currently supported in the gcmfaces framework are:130

(1) the MITgcm ‘mds’ binary format documented here5; (2) the ‘nctiles’ for-131

mat used to distribute ECCO v4 fields (Forget et al., 2015). When reading132

5http://mitgcm.org/public/r2 manual/latest/online documents/manual.pdf

13

@gcmfaces/subsasgn.m
@gcmfaces/subsref.m
gcmfaces
@gcmfaces/subsref.m
@gcmfaces/subsasgn.m
gcmfaces
convert2array.m
convert2gcmfaces.m
gcmfaces
http://mitgcm.org/public/r2_manual/latest/online_documents/manual.pdf

such files, the provided I/O functions (rdmds2gcmfaces.m, read bin.m, and133

read nctiles.m) reformat the data into gcmfaces objects on the fly.134

4 Tutorial135

Here it is assumed that the user has completed the installation procedure in136

section 1.3 (including the installation of ‘nctiles climatology/’ and ‘m map/’).137

gcmfaces_demo.m can then be executed by starting Matlab and typing138

p = genpath('gcmfaces/'); addpath(p);139

p = genpath('m_map/'); addpath(p);140

gcmfaces_demo;141

to illustrate several gcmfaces’ capabilities. As prompted by gcmfaces_demo.m142

the user specifies a desired amount of explanatory text output. gcmfaces_demo.m143

then proceeds through the examples while displaying explanations in the144

Matlab command window. Before each example the user is prompted to145

type the return key to proceed further. The Matlab GUI and debugger can146

also be used to run the examples line by line.147

The first section of gcmfaces_demo.m illustrates I/O (grid_load.m148

) and plotting (example_display.m) capabilities. gcmfaces relies on149

m_map (https://www.eoas.ubc.ca/ rich/map.html) for geographical projec-150

tions through the m_map_gcmfaces front-end that typically produces Fig. 4.151

The convert2pcol function provides an alternative way to display results152

directly via ‘pcolor’ (Fig. 5). The second section of gcmfaces_demo.m fo-153

cuses on data processing capabilities such as interpolation (example_interp.m154

) and smoothing (example_smooth.m). example_interp.m illustrates the155

interpolation of gcmfaces fields to a lat-lon grid, and vice versa. example_smooth.m156

integrates a diffusion equation, which illustrates computations of tracer gra-157

dients and flux convergences. Finally gcmfaces_demo.m illustrates compu-158

14

gcmfaces
gcmfaces_demo.m
gcmfaces
gcmfaces_demo.m
gcmfaces_demo.m
gcmfaces_demo.m
grid_load.m
example_display.m
gcmfaces
m_map
https://www.eoas.ubc.ca/~rich/map.html
m_map_gcmfaces
convert2pcol
gcmfaces_demo.m
example_interp.m
example_smooth.m
example_interp.m
gcmfaces
example_smooth.m
gcmfaces_demo.m

tations of oceanic transports (example_transports.m).159

Figure 4: Same as Fig. 3 but plotted in geographical coordinates using

m map gcmfaces.m. This plot is generated by calling ‘example display(4)’.

15

example_transports.m

Figure 5: Same as Fig. 3 but plotted in geographical coordinates using con-

vert2pcol.m. This plot is generated by calling ‘example display(3)’.

16

5 Standard Analysis160

The gcmfaces ‘standard analysis’ consists of an extensive set of physical di-161

agnostics that are routinely monitored in MITgcm simulations and ECCO v4162

estimates (e.g., Forget et al., 2015, 2016). The computational loop is oper-163

ated by diags_driver.m that expects the data organization shown in Fig. 1.164

The results of diags_driver.m are stored in a dedicated directory (‘mat/’165

in Fig. 1). The display phase is done afterwards by calling diags_display.m166

(simple display to screen) or diags_driver_tex.m (to generate a tex file).167

Here it is assumed that the user has completed the installation proce-168

dure in section 1.3 (including the installation of ‘nctiles climatology/’ and169

‘m map/’). The code below then generates and displays mean and vari-170

ance maps (setDiags=’B’ encoded in diags_set_B.m) from the ECCO v4171

monthly mean climatology (12 monthly fields), which takes ≈ 5 minutes:172

%add paths:173

p = genpath('gcmfaces/'); addpath(p);174

p = genpath('MITprof/'); addpath(p);175

p = genpath('m_map/'); addpath(p);176

177

%compute diagnostics:178

help diags_driver;179

dirModel='release2_climatology/';180

dirMat=[dirModel 'mat/'];181

setDiags='B';182

diags_driver(dirModel,dirMat,'climatology',setDiags);183

184

%display results:185

diags_display(dirMat,setDiags);186

17

gcmfaces
diags_driver.m
diags_driver.m
diags_display.m
diags_driver_tex.m
diags_set_B.m

Each generated plot has a caption that indicates the quantity being dis-187

played. Other sets of diagnostic can be displayed similarly with different188

specifications of setDiags. Each one requires a specific set of model output.189

Sets of diagnostics that can be generated using ‘nctiles climatology/’ or ‘nc-190

tiles monthly/’ include oceanic transports (‘A’), mean and variance maps191

(‘B’), sections and time series (‘C’), and mixed layer depths (‘MLD’).192

If the ‘setDiags’ argument to diags_driver.m is omitted then these193

four diagnostic sets are generated at once, which takes ≈1/2 hour. Each set194

of diagnostics (computation and display) is encoded in one routine with a195

name such as ‘diags set XX.m’ (where ‘XX’ stands for e.g., ‘A’, ‘B’, ‘C’, or196

‘MLD’). These routines can be found in the ‘gcmfaces diags/’ subdirectory197

and are expected to be operated via diags driver.m.198

The results generated via diags driver.m can then be displayed via di-199

ags driver tex.m which saves plots to disk and creates a compilable tex file200

including all of the plots. This can take an additional 10 minutes:201

dirModel='release2_climatology/'; dirMat=[dirModel 'mat/'];202

dirTex=[dirModel 'tex/']; nameTex='standardAnalysis';203

diags_driver_tex(dirMat,{},dirTex,nameTex);204

These same diagnostics can be generated for the monthly ECCO v4 time205

series (ftp://mit.ecco-group.org/ecco for las/version 4/release2/nctiles monthly/)206

The code snippet below expects ‘nctiles monthly/’ to be placed as depicted207

in Fig. 1. Since the 20 year time series consists of 240 monthly records, the208

computational times reported above are multiplied by 20. Thus209

diags_driver(dirModel,dirMat,[1992:2011]);210

is typically ran overnight. The computation can be distributed over multiple211

processors by splitting [1992:2011] into subsets.212

18

diags_driver.m
ftp://mit.ecco-group.org/ecco_for_las/version_4/release2/nctiles_monthly/

	Download And Update
	download frozen copies
	use the MITgcm CVS server
	getting started with gcmfaces

	The gcmfaces class
	Basic Features
	Grid Variables
	Exchange Functions
	Overloaded Functions
	I/O Functions

	Tutorial
	Standard Analysis

