
gcmfaces

a matlab framework for the
analysis of gridded earth variables

Gäel Forget gforget@mit.edu

Dept. of Earth, Atmospheric and Planetary Sciences

Massachusetts Institute of Technology

Cambridge MA 02139 USA

January 21, 2015

Overview

gcmfaces is a matlab framework designed to handle gridded earth variables;

results of MITgcm ocean simulations originally. It allows users to seamlessly

deal with a variety of gridding approaches (e.g. see Fig.1) using compact

and generic codes. It includes many basic and more evolved functionalities

such as plotting, or computing transports, gradients, and budgets. This

document provides guidelines to download and update the software, followed

by a general presentation of gcmfaces

Disclaimer: The free software programs may be freely distributed, pro-

vided that no charge is levied, and that the disclaimer below is always attached

to it. The programs are provided as is without any guarantees or warranty.

Although the authors have attempted to find and correct any bugs in the free

software programs, the authors are not responsible for any damage or losses

of any kind caused by the use or misuse of the programs. The authors are

under no obligation to provide support, service, corrections, or upgrades to

the free software programs.

1

gcmfaces
MITgcm
gcmfaces

Download And Update

To download and start using gcmfaces , first hit the download button at

http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/\

setup_gcmfaces_and_mitprof.csh

Move that C-shell script to a dedicated directory, and execute it per

source setup_gcmfaces_and_mitprof.csh

This will download codes from the MITgcm CVS server (see below), and

use wget to download sample data sets for testing, then start matlab and

test-run the software. This should work just fine under linux and mac os

(but probably not under windows) and you should then be ready to use

gcmfaces and MITprof 1. If that approach failed on your system, then

you can download a frozen version of the matlab close, and run the tests

manually, as depicted in Table 1.

All past and future evolutions of the gcmfaces code can be traced using

the cvs version control system. If you downloaded gcmfaces using cvs

directly or via setup gcmfaces and mitprof.csh, then you are advised to keep

your copy of gcmfaces up to date using the ’cvs update -P -d’ command,

in order to take advantage of the latest developments. If you are new to cvs

, then you may want to be careful and read about this command, e.g. @

http://mitgcm.org/public/using_cvs.html

1MITprof is a separate package dedicated to the processing and analysis of ocean in

situ data (profiles). It uses gcmfaces but is not necessary to gcmfaces , so that you may

delete it if you have no use for it.

2

gcmfaces
MITgcm
gcmfaces
MITprof
gcmfaces
cvs
gcmfaces
cvs
gcmfaces
cvs
MITprof
gcmfaces
gcmfaces

Table 1: Instructions to download input files manually. Note, however, that

the preferred method consists in using setup gcmfaces and mitprof.csh

wget ftp://mit.ecco-group.org/ecco_for_las/version_4/release1/\

ancillary_data/gcmfaces_MITprof_r1.tar

tar xvf gcmfaces_MITprof_r1.tar

wget ftp://mit.ecco-group.org/ecco_for_las/version_4/release1/\

ancillary_data/GRID_r1.tar

tar xvf GRID_r1.tar

wget ftp://mit.ecco-group.org/ecco_for_las/version_4/release1/\

ancillary_data/OCCAetcONv4GRID_r1.tar

tar xvf OCCAetcONv4GRID_r1.tar

wget --recursive ftp://mit.ecco-group.org/gforget/nctiles_climatology/ETAN

mkdir gcmfaces/sample_input

mv OCCAetcONv4GRID gcmfaces/sample_input

mv mit.ecco-group.org/gforget/nctiles_climatology gcmfaces/sample_input/.

matlab -nodesktop

addpath gcmfaces;

gcmfaces_init;

exit;

3

An important point is that you want to avoid creating conflicts that may

ultimately require extra work. Those could arise if, since your latest update,

you modified your copy of a routine in its original directory, and developers

modified it in the cvs repository over the same time span. ’cvs update’

usually won’t be able to correctly patch two modifications together. You risk

ending up with a disfunctional routine that you would have to fix manually.

You can avoid this situation by following two simple guidelines: (1) if you

need to modify a routine, don’t do it in the original directory. Instead copy

the routine to another directory of your matlab path, and edit it there. (2)

before executing ’cvs update -P -d’, always execute ’cvs -n update’ to be

on the safer side. This command won’t do anything to the files but it will

print information to screen, telling you what would happen if you actually

executed ’cvs update’. This will in particular help you identify and prevent

potential conflicts; in case you did not follow guideline #1.

4

cvs

Contents

1 Introduction 6

2 The gcmfaces Class 10

3 The Grid Specifications 13

4 A Tutorial : gcmfaces demo.m 16

5 The gcmfaces Standard Analysis 23

5

1 Introduction

MITgcm allows for various ways of discretizing the earth, as do most state

of the art general circulation models. A few are illustrated in Fig.1. A

key reason for the variety of gridding approaches are numerical limitations

implied by grid singularities where grid lines converge. Note that each grid

in Fig.1 shows such ’ grid poles’. Most advanced grids (e.g. Fig.1, bottom

panels) are designed to reduce grid lines convergence, and place ’grid poles’

on land rather than in the ocean. Our purpose is not to discuss grid designs

in details though – a vast literature exists on this subject. It suffices to say

that, at least, the four types of grids shown in Fig.1 are currently used. And,

as advanced grids become popular amongst modelers, additional burden can

fall on users – a need for new software to analyze the results, and the need

for multiple software to compare differently gridded results.

gcmfaces alleviates this burden, by taking advantage of two basic facts.

First, despite the apparent heterogeneity and complexity of grids designs, all

of the grids we are concerned with can be decomposed into simple rectangular

arrays (’faces’). This property is illustrated in Fig.2 for the lat-lon-cap grid

of Fig.1 (bottom right). It is a general property simply because those grids

are designed for computer use. It is by virtue of this property that MITgcm

and gcmfaces can handle various grids in a largely generic way. Second,

matlab allows for object oriented programming. As explained in section 2,

gcmfaces uses this feature to make grids specifics transparent to the user.

The grid specification itself is depicted in section 3. With these elements in

place, advanced diagnostics implemented in a generic and compact way are

presented in sections 4 and 5.

All routines should include a help section that can be accessed from within

matlab. It typipcally states the object of the routine, its input parameters,

and its output results. There is no point in duplicating this information here

6

MITgcm
gcmfaces
MITgcm
gcmfaces
gcmfaces

in details. The routines are organized by topics as depicted in Tab. to be

added.

7

Figure 1: Four different ways of gridding the earth. Top left: lat-lon grid,

mapping the earth to a single rectangular array (’face’). Top right: cube-

sphere grid, mapping the earth to the six faces of a cube. Bottom right:

lat-lon-cap grid (five faces). Bottom left: quadripolar grid (four faces). Faces

are color-coded, and the ocean topography underlaid.

8

Figure 2: Ocean bottom depth, over a lat-lon-cap grid, displayed in gcmfaces

format. In each panel, the red number shows the face number, going from

one to five. Indexing on each face is discussed in text.

1

20 40 60 80

50

100

150

200

250

2

20 40 60 80

50

100

150

200

250

3

20 40 60 80

20

40

60

80

4

50 100 150 200 250

20

40

60

80

5

50 100 150 200 250

20

40

60

80

9

2 The gcmfaces Class

At the core of gcmfaces is the gcmfaces class (or data type) defined in the

’@gcmfaces’ directory. In order to explain its design and specification, it is

useful to start by recalling basic notions about matlab classes.

There is a number of pre-defined data types (’classes’) within matlab. The

most common classes may be ’logical’, ’single’, ’double’ and ’char’. Familiar

classes also include ’cell’ and ’struct’. Certain operations (e.g. ’+’ or ’strcat’)

are associated with certain classes (e.g. double or char). Very rarely is a given

operation valid for all classes though (e.g. ’+’ or ’strcat’ are not).

The struct class is relevant to deal with elaborate grid topologies, since

it allows us to organize data of various types and sizes (see Tab.2). For

our purpose though, a major limitation of struct objects is that numerical

operations such as ’+’ do not apply to struct objects. Adding two such

objets requires adding their respective f1, f2, etc. and similarly for any other

operation, which would quickly become very cumbersome.

Table 2: gridded earth variable represented as a struct or gcmfaces object,

in a case where the grid (Fig.1, bottom right) consists of five faces (f1 to f5).

fld =

nFaces: 5

f1: [90x270 double]

f2: [90x270 double]

f3: [90x90 double]

f4: [270x90 double]

f5: [270x90 double]

To circumvent this limitation, matlab offers the possibility of user defined

10

gcmfaces

classes, in which the Tab.2 struct is associated with e.g. a valid ’+’ operation.

Once the code for ’+’ is provided (@gcmfaces/plus.m ; see Tab.3) it can be

used as ’fld+fld’, ’1+fld’ or ’fld+1’. In executing such commands, as opposed

to ’1+1’, matlab detects that one of the arguments is of the gcmfaces class,

so it uses @gcmfaces/plus.m rather than the default ’+’. This process is

often referred to as overloading or overriding an operator. Then the internal

logic of @gcmfaces/plus.m treats the variety of second arguments (double

or gcmfaces) and nFaces values. That basically is what the gcmfaces class

boils down to – the Tab.2 struct associated with Tab.3-like operations.

As a result, any higher level gcmfaces program (see next sections) can

use the compact form ’+’. Let us emphasize genericity here. The ’1+fld’

command will be valid regardless of grid specifics, and won’t require any

editing when switching grid. A number of such basic operators, as listed

below, are readily overloaded as part of gcmfaces . They can be found in

the @gcmfaces subdirectory that defines the gcmfaces class. The following

routines provide a blueprint for users that may want to extend the list of

overloaded operators.

• Logical operators: and, eq, ge, gt, isnan, le, lt, ne, not, or.

• Numerical operators: abs, angle, cat, cos, cumsum, diff, exp, imag,

log2, max, mean, median, min, minus, mrdivide, mtimes, nanmax,

nanmean, nanmedian, nanmin, nanstd, nansum, plus, power, rdivide,

real, sin, sqrt, std, sum, tan, times, uminus, uplus.

• data operators: display, find, gcmfaces, get, set, squeeze, subsasgn,

subsref, repmat.

Those functions are generally similar to @gcmfaces/plus.m in the sense

that they may be called upon just like they would be for arrays, and that they

operate face by face. A noteworthy exception is that the overloaded max,

11

@gcmfaces/plus.m
@gcmfaces/plus.m
@gcmfaces/plus.m
gcmfaces
gcmfaces
@gcmfaces/plus.m

Table 3: @gcmfaces/plus.m : the ’+’ function for gcmfaces objects.

function r = plus(p,q)

%overloaded gcmfaces plus function :

% simply calls double plus function for each face data

% if any of the two arguments is a gcmfaces object

if isa(p,’gcmfaces’); r=p; else; r=q; end;

for iFace=1:r.nFaces;

iF=num2str(iFace);

if isa(p,’gcmfaces’)&isa(q,’gcmfaces’);

eval([’r.f’ iF ’=p.f’ iF ’+q.f’ iF ’;’]);

elseif isa(p,’gcmfaces’)&isa(q,’double’);

eval([’r.f’ iF ’=p.f’ iF ’+q;’]);

elseif isa(p,’double’)&isa(q,’gcmfaces’);

eval([’r.f’ iF ’=p+q.f’ iF ’;’]);

else;

error(’gcmfaces plus: types are incompatible’)

end;

end;

12

mean, median, min, std, and sum can be applied either globally and face by

face. They return global results when passed a sole gcmfaces argument. They

return face by face results otherwise. It is also worth emphasizing some of the

data operators, namely @gcmfaces/subsasgn.m @gcmfaces/subsref.m

and @gcmfaces/gcmfaces.m . While their name may not sound famil-

iar, subsref.m and subsasgn.m are some of the most commonly used mat-

lab functions. Typically, if tmp1 is an array, then ’tmp2=tmp1(1);’ and

’tmp1(1)=1;’ respectively are compact form calls to subsref and subsasgn.

Hence @gcmfaces/subsref.m specifies that, for example,

fld{n} will return the n^{th} face data (array).

fld(:,:,n) will return the n^{th} vertical level (gcmfaces).

fld.nFaces will return the nFaces attribute (double).

and assignments are consistently done using @gcmfaces/subsasgn.m Fi-

nally, @gcmfaces/gcmfaces.m creates an empty gcmfaces object, according

to the specifics of the grid that is in use, which is the next section topic.

3 The Grid Specifications

In practice the gcmfaces framework is activated by a grid definition. The

lat-lon-cap grid (Fig.1, bottom right) is used for illustration, which is readily

available (section 1). Indexing, naming, etc. conventions are simply inherited

from MITgcm , so we won’t present them in extensive details.

gcmfaces supports C-grids of various sizes, and for various domain de-

compostions (see Fig.1). The grid variables (Tab.4) are carried in mem-

ory using the mygrid global structure. They are first read from file using

gcmfaces_IO/grid_load.m which requires three arguments : the grid files

location (dirGrid), the domain decomposition (nFaces), and the file format

(fileFormat). Once the grid fields in Fig.1 are in mygrid , this global structure

13

@gcmfaces/subsasgn.m
@gcmfaces/subsref.m
@gcmfaces/gcmfaces.m
@gcmfaces/subsref.m
@gcmfaces/subsasgn.m
@gcmfaces/gcmfaces.m
gcmfaces
MITgcm
gcmfaces
mygrid
gcmfaces_IO/grid_load.m
mygrid

is available to any routine including a call to gcmfaces_global.m and the

user can readily take advantage of the generic operations (previous section)

and of higher level gcmfaces functionalities within (next sections).

The grid variables are listed in Tab.4 and output of MITgcm . Extensive

details on the C-grid specifications and associated conventions can be found

in the MITgcm user manual (section 2.11 and 6.2.4). In brief, XC, YC and

RC denote longitude, latitude and vertical position of tracer points (e.g.

temperature points). DXC, DYC, DRC and RAC are the corresponding grid

spacings (in m) and grid cell areas (in m2). Another set of such fields (XG,

YG, RF, DXG, DYG, DRF, RAZ) is necessary to complete the staggered

grid specification. Fig.2 is indicative of the MITgcm indexing and vector

conventions. On each face of the lat-lon-cap grid, each tile of the first index

goes from left to right, and the second goes from bottom to top. This becomes

clear by matching dimensions in Tab.2 with axes in Fig.2.

For a vector field the first component (U) points to the right of the page,

whereas the second component (V) points to the top of the page. On the

C-Grid, U components are shifted by half a grid point towards the left of the

page, while V components are shifted by half a grid point towards the bottom

of the page. Computing northward and eastward components (U
n
,V

e
) of

(U,V) proceeds in two steps : (1) average (U,V) to tracer points at the grid

cell center and (2) apply a rotation of the coordinate system. To this end,

AngleCS and AngleSN give the grid lines orientation relative to meridians

and parallels (Tab.4). hFacC, hFacS and hFacW specify the ocean/land

mask, and Depth the sea floor depth (Tab.4).

The four grid topologies depicted in Fig.1 are readily supported in gcmfaces

The corresponding values for nFaces are 1, 4, 5, and 6. The supported file for-

mats are the MITgcm binary formats2 and the nctiles defined by gcmfaces

2’straight’ corresponds to W2 mapIO=-1, ’cube’ to W2 mapIO=1, and ’compact’ to

W2 mapIO=0

14

gcmfaces_global.m
gcmfaces
MITgcm
MITgcm
MITgcm
gcmfaces
MITgcm
nctiles
gcmfaces

Table 4: list of variables contained in the mygrid global structure.

dirGrid : ’./sample input/GRIDv4/’

nFaces : 5

fileFormat : ’compact’

XC : [1x1 gcmfaces] longitude (tracer)

YC : [1x1 gcmfaces] latitude (tracer)

RC : [50x1 double] depth (tracer)

XG : [1x1 gcmfaces] longitude (vorticity)

YG : [1x1 gcmfaces] latitude (vorticity)

RF : [51x1 double] depth (velocity along 3rd dim)

DXC : [1x1 gcmfaces] grid spacing (tracer, 1st dim)

DYC : [1x1 gcmfaces] grid spacing (tracer, 2nd dim)

DRC : [50x1 double] grid spacing (tracer, 3nd dim)

RAC : [1x1 gcmfaces] grid cell area (tracer)

DXG : [1x1 gcmfaces] grid spacing (vorticity, 1st dim)

DYG : [1x1 gcmfaces] grid spacing (vorticity, 2nd dim)

DRF : [50x1 double] grid spacing (velocity, 3nd dim)

RAZ : [1x1 gcmfaces] grid cell area (vorticity)

AngleCS : [1x1 gcmfaces] grid orientation (tracer, cosine)

AngleSN : [1x1 gcmfaces] grid orientation (tracer, cosine)

Depth : [1x1 gcmfaces] ocean bottom depth (tracer)

hFacC : [1x1 gcmfaces] partial cell factor (tracer)

hFacS : [1x1 gcmfaces] partial cell factor (velocity, 2nd dim)

hFacW : [1x1 gcmfaces] partial cell factor (velocity, 1rst dim)

15

In practice, introducing a new grid topology requires three items : (1) I/O

routines to go map output files to gcmfaces objects, and vice versa; (2) a

routine that lays out grid faces to a plane in an array format for plotting

purposes (see below); (3) ’exchange’ routines that append (to each face)

rows and columns from neighboring faces (see below). These only three grid

specific elements in gcmfaces allow everything else to be treated generically.

4 A Tutorial : gcmfaces demo.m

Recall that the setup gcmfaces and mitprof.csh script runs a few basic com-

putational tests (see section 1). Assuming that this process went smoothly:

start matlab from the gcmfaces directory and run gcmfaces_demo.m .

As prompted: specify the desired amount of explanatory text output. The

program (gcmfaces_demo.m) will then carry and depict a series of compu-

tations, with text comments printed to the matlab command window. Using

the matlab GUI, user can proceed with the computations step by step.

The first call to gcmfaces_global.m adds subdirectories to the matlab

path and environment variables in myenv . The other routines called upon by

gcmfaces_demo.m in turn call grid_load.m that loads the lat-lon-cap grid

into the mygrid global structure (section 3). This call sequence, as explained

before, is the basis for any higher level gcmfaces computation. Call to

gcmfaces_global.m will be found at the start of any gcmfaces routine

that requires grid information. However repeated calls of grid_load.m are

not necessary, unless repeatedly clearing global variables.

The first portion of gcmfaces_demo.m focuses on plotting capabilities.

A pre-requisite to most plotting operations are format conversions. Indeed

common matlab plotting routines expect simple array inputs. Let us start

with the quick and dirty method that does not deal with geographical coor-

dinates (qwckplot.m). To this end convert2array.m assembles the

16

gcmfaces
matlab
gcmfaces_demo.m
gcmfaces_demo.m
gcmfaces_global.m
myenv
gcmfaces_demo.m
grid_load.m
mygrid
gcmfaces
gcmfaces_global.m
gcmfaces
grid_load.m
gcmfaces_demo.m
qwckplot.m
convert2array.m

faces data into one array, and imagesc is then used for plotting (Fig.3). The

faces numbers as indicated in Fig.3 were rotated and placed consistent with

the way convert2array.m operates for this grid (compare with Fig.2).

For basic geographical coordinates displays, one can use convert2pcol.m

then pcolor, leading to Fig.4. Finally, gcmfaces relies on m_map for various

geographical projections. The m_map_gcmfaces front-end to m_map deals

with data format conversions, and typically produces Fig.5.

Figure 3: same field as in Fig.2, but once the 5 faces have been assembled

into one array, using convert2array.m

The second portion of gcmfaces_demo.m focuses on data processing

features such as bin averaging, interpolating, smoothing and format conver-

17

convert2array.m
convert2pcol.m
gcmfaces
m_map
m_map_gcmfaces
m_map
gcmfaces_demo.m

Figure 4: as Fig.2 but in geographical coordinates, using convert2pcol

sions. We want to draw the reader’s attention to example_smooth.m that

has additional value as a tutorial. Indeed it consists in time stepping a diffu-

sion equation, which involves computations of gradients (calc_T_grad.m)

and divergences (calcUV_div.m) . These general interest computations

furthermore involve the ’exchange’ routines that are instrumental to global

computations within the gcmfaces and MITgcm framework.

Assume, for example, that you want to compute spatial derivatives of

a gridded tracer field T in some ocean domain D delimited by a closed

contour C. It should be clear that you need to know T not only inside of

18

example_smooth.m
(calc_T_grad.m)
(calcUV_div.m)
gcmfaces
MITgcm

Figure 5: as Fig.2 but in geographical coordinates, using m map gcmfaces

C but also for the neighboring grid points that lie right outside of C. This

thought experiment applies to the specific case where D is one of the grid

faces in Fig.2. Thus, to compute gradients on face 1, for example, one needs

neighboring values of T from faces 2, 3, and 5. Exchanging tracer data

between neighboring faces is the purpose of exch_T_N.m as illustrated in

calc_T_grad.m . For velocity data, exch_UV_N.m is to be used instead

as illustrated in calcUV_div.m .

The third portion of gcmfaces_demo.m charts an analysis of the global

ocean circulation (example_transports.m). It requires additional model

MITgcm output (input to gcmfaces) that the user can download per

19

exch_T_N.m
calc_T_grad.m
exch_UV_N.m
calcUV_div.m
gcmfaces_demo.m
example_transports.m
MITgcm
gcmfaces

mkdir release1

wget --recursive ftp://mit.ecco-group.org/gforget/nctiles_climatology

mv mit.ecco-group.org/gforget/nctiles_climatology release1/.

rm -rf mit.ecco-group.org

These files will further be used in the gcmfaces standard analysis (section

5), and are expected to be organized according to Fig.6. Each file group (i.e.

subdirectory of nctiles climatology/) can be loaded using read_nctiles.m

To compute transports through oceanic transects, example_transports.m

first augments mygrid with mygrid.LINES_MASKS . Indeed, in general,

oceanic transects cannot generally be expected to follow grid lines in a sim-

ple fashion. Therefore gcmfaces_lines_transp.m determines paths over

model grid lines that closely follow specified transects respectively. An ex-

ample is shown in Fig.7 for a transect defined as the great circle arc between

45E-85N and 135W-85N. Zonal averages and transports are handled in sim-

ilar fashion via gcmfaces_lines_zonal.m and mygrid.LATS_MASKS .

With these elements in place, example_transports.m illustrates the

following computations: barotropic streamfunction (calc_barostream.m)

, overturning streamfunction (calc_overturn.m) , transects transports

(calc_transports.m) , zonal mean tracer fields (calc_zonmean_T.m) ,

and meridional heat and fresh water transports (calc_MeridionalTransport.m)

The results are displayed by example_transports_disp.m

20

gcmfaces
read_nctiles.m
example_transports.m
mygrid
mygrid.LINES_MASKS
gcmfaces_lines_transp.m
gcmfaces_lines_zonal.m
mygrid.LATS_MASKS
example_transports.m
(calc_barostream.m)
(calc_overturn.m)
(calc_transports.m)
(calc_zonmean_T.m)
(calc_MeridionalTransport.m)
example_transports_disp.m

Figure 6: Directory structure as expected by gcmfaces demo.m (section 4)

and diags driver.m (section 5). The toolboxes themselves can be relocated

anywhere as long as their locations are included in the matlab path. Ad-

vanced analysis using diags driver.m and diags driver tex.m will respectively

generate the mat/ directory (for intermediate computational results) and the

tex/ directory (for the standard analysis document). This diagnostic process

relies on the depicted organization of GRID/ (see section 3) and release1/

(see section 5) for automation. User will otherwise be prompted to enter di-

rectory names. The nctiles climatology/ and nctiles/ local subdirectory may

contain downloaded copies of these files or those files for example, whereas

diags/ may contain binary MITgcm output generated by the user.

./

gcmfaces/ (matlab toolbox)

sample input/ (binary files)

@gcmfaces/ (matlab codes)

gcmfaces calc/ (matlab codes)

...

GRID/ (binary output)

release1/

diags/ (binary output)

nctiles/ (netcdf output)

nctiles climatology/ (netcdf

output)

mat/ (created by gcmfaces)

tex/ (created by gcmfaces)

...

other solution/

diags/ (binary output)

...

...

21

http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/ancillary_data/standardAnalysis.pdf
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/nctiles_climarology
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/nctiles

30 35 40 45 50 55 60
30

35

40

45

50

55

60

Figure 7: Example of a grid line path (in red) that approximates a transect

between 45E-85N and 135W-85N. Location : central part of face 3 from

Fig.2. Shading : ocean bottom depth. Blue lines : grid cell edges.

22

5 The gcmfaces Standard Analysis

The standard analysis (codes in gcmfaces diags/) consists of a series of phys-

ical diagnostics of common interest that are routinely carried out to docu-

ment and compare simulations of the global ocean. Each set of diagnostics

X is entirely encoded (computation and display) in one routine named as

diags_set_X.m . To define diagnostics X (X being just a placeholder here)

users can follow the directions in diags_set_user.m or take example of

the already included sets of diagnostics in gcmfaces diags/

The computational loop is operated through diags_driver.m with

’X’ as the third argument (see help diags_driver.m for details)

and the results are stored to files in mat/ (see Fig.6). The display phase

is done later by calling diags_display.m (simple display to screen) or

diags_driver_tex.m (to generate a pdf file in tex/). An example of the

end result, based entirely on already downloaded gcmfaces code, can be

found here. In the context of state estimation, model-data misfit analyses

are also included in the standard analysis (using MITprof files and codes).

Gridded physical variables involved in each diagnostic computational loop

(e.g. temperature fields ’THETA’) are to be provided by users either as

MITgcm output (binary files) or in the nctiles format (netcdf files) as depicted

in Fig.6. In the nctiles case, the directory and file organization is shown here.

In the binary output case, file names and contents are shown there.

23

diags_set_X.m
diags_set_user.m
diags_driver.m
help
diags_driver.m
diags_display.m
diags_driver_tex.m
gcmfaces
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/ancillary_data/standardAnalysis.pdf
MITprof
http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release1/nctiles
http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/verification/global_oce_llc90/input/data.diagnostics?revision=1.2&view=markup

	Introduction
	The gcmfaces Class
	The Grid Specifications
	A Tutorial : gcmfaces_demo.m
	The gcmfaces Standard Analysis

