
gcmfaces

a matlab framework for the
analysis of gridded earth variables

Gäel Forget gforget@mit.edu

Dept. of Earth, Atmospheric and Planetary Sciences

Massachusetts Institute of Technology

Cambridge MA 02139 USA

October 31, 2011

Contents

1 Software Download and Update Procedures 3

2 The Basis of gcmfaces 5

2.1 Introduction . 5

2.2 The gcmfaces Class . 8

2.3 Specifying Grids . 11

3 Higher Level Functions 15

3.1 Illustrative Examples . 15

3.2 Functions Inventory . 18

1

gcmfaces is a matlab framework designed to handle gridded earth vari-

ables; results of MITgcm ocean simulations originally. It allows users to

seamlessly deal with a variety of gridding approaches (e.g. see Fig.1) using

compact and generic codes. It includes many basic and more evolved func-

tionalities such as plotting, or computing transports, gradients, and budgets.

Section 2 serves as a broader introduction of gcmfaces ; its design and its

basic concepts. Section 3 is dedicated to more advanced functionalities. But

first let us explain how to obtain the software, and later keep it up to date.

Disclaimer: The free software programs may be freely distributed, pro-

vided that no charge is levied, and that the disclaimer below is always attached

to it. The programs are provided as is without any guarantees or warranty.

Although the authors have attempted to find and correct any bugs in the free

software programs, the authors are not responsible for any damage or losses

of any kind caused by the use or misuse of the programs. The authors are

under no obligation to provide support, service, corrections, or upgrades to

the free software programs.

2

gcmfaces
MITgcm
gcmfaces

1 Software Download and Update Procedures

To download and start using gcmfaces , first hit the download button at

http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/

setup_gcmfaces_and_mitprof.csh

Move that C-shell script to a dedicated directory, and execute it as

source setup_gcmfaces_and_mitprof.csh

This will download codes from the MITgcm CVS server (see below), wget

sample data sets for testing, start matlab and test-run the software. This

should work just fine under linux and mac os (but probably not under win-

dows) and you should then be ready to use gcmfaces and MITprof 1

If ever that approach failed on your system, then you want to do download

and test manually. Typically, open a terminal window in C shell, and do

setenv CVSROOT ’:pserver:cvsanon@mitgcm.org:/u/gcmpack’

cvs login

(enter the CVS password: "cvsanon")

cvs co -d gcmfaces MITgcm_contrib/gael/matlab_class

Then download, gunzip and untar the sample input data from

http://mitgcm.org/~gforget/sample_input.tar.gz

Then start matlab from the gcmfaces directory and run gcmfaces_init.m

1MITprof is a separate package dedicated to the processing and analysis of ocean in

situ data (profiles). It uses gcmfaces but is not necessary to gcmfaces , so that you may

delete it if you have no use for it.

3

gcmfaces
MITgcm
gcmfaces
MITprof
gcmfaces_init.m
MITprof
gcmfaces
gcmfaces

All past and future evolutions of the software can be tracked using the cvs

version control system. In order to take advantage of the latest developments,

you are advised to keep your copy of gcmfaces up to date using the ’cvs

update -P -d’ command. If you are new to cvs , you may want to be careful

and read about this command. See for example

http://mitgcm.org/public/using_cvs.html

An important point is that you want to avoid creating conflicts that may

ultimately require extra work from you. Those could arise if, since your

latest update, you modified your copy of a routine in its original directory,

and developers modified it in the cvs repository over the same time span.

’cvs update’ usually won’t be able to patch two modifications together. You

risk ending up with a disfunctional patched routine that you would have to fix

manually. You can avoid this situation by following two simple guidelines: (1)

if you need to modify a routine, don’t do it in the original directory. Instead

copy the routine to another directory of your matlab path, and edit it there.

(2) before executing ’cvs update -P -d’, always execute ’cvs -n update’ to be

on the safer side. This command won’t do anything to the files but it will

print information to screen, telling you what would happen if you actually

executed ’cvs update’. This will in particular help you identify and prevent

potential conflicts; in case you did not follow (1).

4

cvs
gcmfaces
cvs
cvs

2 The Basis of gcmfaces

2.1 Introduction

MITgcm allows for various ways of discretizing the earth, as do most state

of the art general circulation models. A few are illustrated in Fig.1. A

key reason for the variety of gridding approaches are numerical limitations

implied by grid singularities where grid lines converge. Note that each grid

in Fig.1 shows such ’ grid poles’. Most advanced grids (e.g. Fig.1, bottom

panels) are designed to reduce grid lines convergence, and place ’grid poles’

on land rather than in the ocean. Our purpose is not to discuss grid designs

in details though – a vast literature exists on this subject. Suffices to say

that, at least, the four types of grids shown in Fig.1 are currently used. And,

as advanced grids become popular amongst modelers, additional burden falls

on users. That is the need for new software to analyze the newer results, and

the need for multiple software to compare differently gridded results.

gcmfaces alleviates this burden, by taking advantage of two basic facts.

First, despite the apparent heterogeneity and complexity of grids designs, all

of the grids we are concerned with can be broken down into simple rectan-

gular arrays (’faces’). This property is illustrated in Fig.2 for the lat-lon-cap

grid of Fig.1 (bottom right). It is a general property simply because those

grids are designed for computer use. It is by virtue of this property that

MITgcm can handle various grids in a largely generic way. The same applies

within gcmfaces . Second, matlab allows for object oriented programming.

As explained hereafter, gcmfaces uses this feature to make grids specifics

transparent, but in the lowest level functions such as ’+’. Advanced diag-

nostics can then be implemented in a generic and compact way.

5

MITgcm
gcmfaces
MITgcm
gcmfaces
gcmfaces

Figure 1: Illustration of four different ways of gridding the earth. Top left:

lat-lon grid, which maps the earth to a single rectangular array (’face’). Top

right: cube-sphere grid, which maps the earth to the six faces of a cube.

Bottom right: lat-lon-cap grid, which maps the earth using five faces (an

arctic face, and four mostly lat-lon sectors). Bottom left: quadripolar grid,

which maps the earth using four faces. For each plot, the different faces are

color-coded, and the ocean topography underlaid.

6

Figure 2: Ocean bottom depth, over a lat-lon-cap grid, displayed in gcmfaces

format. In each panel, the red number shows the face number, going from

one to five. Indexing on each face is discussed in text.

1

20 40 60 80

50

100

150

200

250

2

20 40 60 80

50

100

150

200

250

3

20 40 60 80

20

40

60

80

4

50 100 150 200 250

20

40

60

80

5

50 100 150 200 250

20

40

60

80

7

2.2 The gcmfaces Class

At the core of gcmfaces is the gcmfaces class (or data type) defined in the

’@gcmfaces’ directory. In order to explain its design and specification, it is

useful to start by recalling basic notions about matlab classes.

There is a number of pre-defined data types (’classes’) within matlab. The

most common classes may be ’logical’, ’single’, ’double’ and ’char’. Familiar

classes also include ’cell’ and ’struct’. Certain operations (e.g. ’+’ or ’strcat’)

are associated with certain classes (e.g. double or char). Very rarely is a given

operation valid for all classes though (e.g. ’+’ or ’strcat’ are not).

The struct class is relevant to deal with elaborate grid topologies, since

it allows us to organize data of various types and sizes (see Tab.1). For

our purpose though, a major limitation of struct objects is that numerical

operations such as ’+’ cannot be applied to them. Each time we would need

to add two such gridded fields, we would thus need to add their respective

f1, f2, etc. explicitely. And similarly for any other operation, either simple

or complex, which would quickly become very cumbersome.

Table 1: gridded earth variable represented as a struct or gcmfaces object,

in a case where the grid (Fig.1, bottom right) consists of five faces (f1 to f5).

fld =

nFaces: 5

f1: [90x270 double]

f2: [90x270 double]

f3: [90x90 double]

f4: [270x90 double]

f5: [270x90 double]

8

gcmfaces

To circumvent this problem, matlab offers the possibility of user defined

classes, in which the Tab.1 struct is associated with e.g. a valid ’+’ operation.

Once the code for ’+’ is provided (@gcmfaces/plus.m ; see Tab.2) it can be

used as ’fld+fld’, ’1+fld’ or ’fld+1’. In executing such commands, as opposed

to ’1+1’, matlab detects that one of the arguments is of the gcmfaces class,

so it uses @gcmfaces/plus.m rather than the default ’+’. This process is

often referred to as overloading or overriding an operator. Then the internal

logic of @gcmfaces/plus.m treats the variety of second arguments (double

or gcmfaces) and nFaces values. That basically is what the gcmfaces class

boils down to – the Tab.1 struct associated with Tab.2-like operations.

As a result, any higher level gcmfaces programs (see next sections) can

use the compact and generic ’+’ form. Let me emphasize genericity here.

The ’1+fld’ command will be valid regardless of grid specifics, such as the

number of faces. It won’t require any edit if we were to apply it to a newly

specified grid. A number of such basic operators, as listed below, are readily

overloaded as part of gcmfaces . They can be found in the @gcmfaces

subdirectory that defines the gcmfaces class. The following routines provide

a blueprint for users that may want to extend the list of overloaded operators.

• Logical operators: and, eq, ge, gt, isnan, le, lt, ne, not, or.

• Numerical operators: abs, angle, cat, cos, cumsum, diff, exp, imag,

log2, max, mean, median, min, minus, mrdivide, mtimes, nanmax,

nanmean, nanmedian, nanmin, nanstd, nansum, plus, power, rdivide,

real, sin, sqrt, std, sum, tan, times, uminus, uplus.

• data operators: display, find, gcmfaces, get, set, squeeze, subsasgn,

subsref, repmat.

Those functions are generally similar to @gcmfaces/plus.m in the sense

that they may be called upon just like they would be for arrays, and that they

9

@gcmfaces/plus.m
@gcmfaces/plus.m
@gcmfaces/plus.m
gcmfaces
gcmfaces
@gcmfaces/plus.m

Table 2: @gcmfaces/plus.m : the ’+’ function for gcmfaces objects.

function r = plus(p,q)

%overloaded gcmfaces plus function :

% simply calls double plus function for each face data

% if any of the two arguments is a gcmfaces object

if isa(p,’gcmfaces’); r=p; else; r=q; end;

for iFace=1:r.nFaces;

iF=num2str(iFace);

if isa(p,’gcmfaces’)&isa(q,’gcmfaces’);

eval([’r.f’ iF ’=p.f’ iF ’+q.f’ iF ’;’]);

elseif isa(p,’gcmfaces’)&isa(q,’double’);

eval([’r.f’ iF ’=p.f’ iF ’+q;’]);

elseif isa(p,’double’)&isa(q,’gcmfaces’);

eval([’r.f’ iF ’=p+q.f’ iF ’;’]);

else;

error(’gcmfaces plus: types are incompatible’)

end;

end;

10

operate face by face. A noteworthy feature however is that max, mean, me-

dian, min, std, and sum operators can be applied either globally and face by

face. They return global values when passed a sole gcmfaces argument. They

return face by face values otherwise. It is also worth emphasizing some of the

data operators, namely @gcmfaces/subsasgn.m @gcmfaces/subsref.m

and @gcmfaces/gcmfaces.m . While their name may not sound famil-

iar, subsref.m and subsasgn.m are some of the most commonly used mat-

lab functions. Typically, if tmp1 is an array, then ’tmp2=tmp1(1);’ and

’tmp1(1)=1;’ respectively are compact form calls to subsref and subsasgn.

Hence @gcmfaces/subsref.m specifies that, for example,

fld{n} will return the n^{th} face data (array).

fld(:,:,n) will return the n^{th} vertical level (gcmfaces).

fld.nFaces will return the nFaces attribute (double).

and assignments are consistently done using @gcmfaces/subsasgn.m Fi-

nally, @gcmfaces/gcmfaces.m creates an empty gcmfaces object, according

to the specifics of the grid that is in use, which is the next section topic.

2.3 Specifying Grids

So far we have defined gcmfaces objects, and associated low-level operations.

To give substance to this framework however, we still need to define a grid.

Two grid examples get downloaded along with the gcmfaces software (see

section 1), which can readily be put to work (see next section). Here we will

use the lat-lon-cap grid (Fig.1, bottom right) for illustration, as we get into

grid specifics. Let us note however that most conventions are simply inherited

from MITgcm , so we won’t present those in extensive details. Instead we shall

emphasize the gcmfaces side of things, and point the reader to the MITgcm

manual for further details on indexing, naming, etc. conventions.

11

@gcmfaces/subsasgn.m
@gcmfaces/subsref.m
@gcmfaces/gcmfaces.m
@gcmfaces/subsref.m
@gcmfaces/subsasgn.m
@gcmfaces/gcmfaces.m
gcmfaces
MITgcm
gcmfaces
MITgcm

gcmfaces supports C-grids of various sizes, and for various domain de-

compostions (see Fig.1). The required grid variables (see below) are carried

in memory using the mygrid global structure. They must first be read from

file by using gcmfaces_IO/grid_load.m which requires three arguments

: the grid files location (dirGrid), the domain decomposition (nFaces), and

the file format (fileFormat). Those are copied to mygrid (first set of vari-

ables in Tab.3) and the grid fields are then accordingly read from file and

added to mygrid . Presently, the supported values of nFaces are 1, 4, 5,

and 6 (see Fig.1), and the supported file formats are MITgcm binary for-

mats : ’straight’ (W2 mapIO=-1), ’cube’ (W2 mapIO=1), and ’compact’

(W2 mapIO=0).Once the grid fields are in mygrid , they can be accessed

in any routine through a call to gcmfaces_global.m That call will also

give access to the myenv global structure (environment variables) and add

gcmfaces directories to the path (if they were missing).

Tab.3 shows the grid fields that need to be specified as part of mygrid.

Their names largely follow MITgcm conventions. In brief, XC, YC and RC

denote the longitude, latitude and depth of tracer points (e.g. temperature

points). DXC, DYC, DRC and RAC are the corresponding grid spacing

fields. Since C-grids are staggered grids, another set of those (XG, YG, RF,

DXG, DYG, DRF, RAZ) is necessary to a full specification of the grid. So

is the specification of the orientation (AngleCS and AngleSN) of grid lines

relative to meridians and parallels. The last set of variables (Depth, hFacC,

hFacS and hFacW) is a specification of the GCM ocean/land mask (not its

grid per se). Extensive details on C-grid variables and associated conventions

can be found in the MITgcm user manual (section 2.11 and 6.2.4).

It is useful to recall indexing and vector conventions though. For this

purpose let us consider the lat-lon-cap grid (Fig.1, bottom right) laid out

on a plane (Fig.2). Gridded fields represented as gcmfaces objects (Tab.1)

basically match that graphical display. On each face the first index goes

12

gcmfaces
mygrid
gcmfaces_IO/grid_load.m
mygrid
mygrid
mygrid
gcmfaces_global.m
myenv
gcmfaces
MITgcm
MITgcm

Table 3: list of variables contained in the mygrid global structure.

dirGrid : ’./sample input/GRIDv4/’

nFaces : 5

fileFormat : ’compact’

XC : [1x1 gcmfaces] longitude (tracer)

YC : [1x1 gcmfaces] latitude (tracer)

RC : [50x1 double] depth (tracer)

XG : [1x1 gcmfaces] longitude (vorticity)

YG : [1x1 gcmfaces] latitude (vorticity)

RF : [51x1 double] depth (velocity along 3rd dim)

DXC : [1x1 gcmfaces] grid spacing (tracer, 1st dim)

DYC : [1x1 gcmfaces] grid spacing (tracer, 2nd dim)

DRC : [50x1 double] grid spacing (tracer, 3nd dim)

RAC : [1x1 gcmfaces] grid cell area (tracer)

DXG : [1x1 gcmfaces] grid spacing (vorticity, 1st dim)

DYG : [1x1 gcmfaces] grid spacing (vorticity, 2nd dim)

DRF : [50x1 double] grid spacing (velocity, 3nd dim)

RAZ : [1x1 gcmfaces] grid cell area (vorticity)

AngleCS : [1x1 gcmfaces] grid orientation (tracer, cosine)

AngleSN : [1x1 gcmfaces] grid orientation (tracer, cosine)

Depth : [1x1 gcmfaces] ocean bottom depth (tracer)

hFacC : [1x1 gcmfaces] partial cell factor (tracer)

hFacS : [1x1 gcmfaces] partial cell factor (velocity, 2nd dim)

hFacW : [1x1 gcmfaces] partial cell factor (velocity, 1rst dim)

13

from left to right, and the second goes from bottom to top. This becomes

clear by matching dimensions in Tab.1 with axes in Fig.2. In addition for

a vector field (e.g. a velocity field) the first component (U) points to the

right (along horizontal grid lines), whereas the second component (V) points

upward. In general a rotation operator is needed to recover northward and

eastward components from the so-defined U and V.

Finally let us anticipate on what may be needed to specify a new grid, and

take advantage of the gcmfaces generic operations. Three things basically:

I/O routines to go from files to gcmfaces objects, and vice versa; some format

conversion routines to facilitate plotting; a plane lay out of faces such as Fig.2,

along with routines to exchange neighboring data amongst faces (see section

3).

14

gcmfaces

3 Higher Level Functions

This section intends to get users started with more advanced analyses. The

gcmfaces_demo.m routine shall serve as both a stepping stone and a tutorial.

It demonstrates a number advanced capabilities that are readily available.

Along the way it displays a detailed account of computations and function

calls. Below we summarize the so-demonstrated functions and emphasize key

features. Then we provide a more thorough inventory of available functions.

3.1 Illustrative Examples

When you downloaded gcmfaces (see section 1) some of the features de-

scribed below have already been tested. Assuming that this first step went

smoothly, you are all set for the next step : start matlab from the gcmfaces

directory and run gcmfaces_demo.m As prompted you first specify the

demo grid and the amount of explanatory text output. gcmfaces_demo.m

then carries and depicts a series of computations accordingly.

The first call to gcmfaces_global.m sets path and environment vari-

ables in myenv Then grid_load.m loads the chosen grid to mygrid This

call sequence, as explained before, is the basis for any higher level gcmfaces

computation. In particular you will find a call to gcmfaces_global.m at

the start of many routines – eventually including your own.

The first part of gcmfaces_demo.m charts a typical analysis of the

global ocean circulation. To compute transports through specified tran-

sects, we first need to augment mygrid with mygrid.LATS_MASKS and

mygrid.LINES_MASKS Indeed, in general, the transects of interest cannot

be expected to follow individual grid lines in a simple fashion. Therefore

gcmfaces_lines_zonal.m and gcmfaces_lines_transp.m are used to

determine paths over model grid lines that closely follow specified zonal lines

and transects respectively. Such a grid line path is shown in Fig.3 for a

15

gcmfaces_demo.m
gcmfaces
matlab
gcmfaces_demo.m
gcmfaces_demo.m
gcmfaces_global.m
myenv
grid_load.m
mygrid
gcmfaces
gcmfaces_global.m
gcmfaces_demo.m
mygrid
mygrid.LATS_MASKS
mygrid.LINES_MASKS
gcmfaces_lines_zonal.m
gcmfaces_lines_transp.m

transect defined as the great circle arc between 45E-85N and 135W-85N.

30 35 40 45 50 55 60
30

35

40

45

50

55

60

Figure 3: Example of a grid line path (in red) that approximates a transect

between 45E-85N and 135W-85N. Location : central part of face 3 from

Fig.2. Shading : ocean bottom depth. Blue lines : grid cell edges.

Next velocity and tracer fields are read from file using rdmds2gcmfaces.m

Then, using mygrid.LATS_MASKS and mygrid.LINES_MASKS , the following

computations are illustrated : barotropic streamfunction (calc_barostream.m)

overturning streamfunction (calc_overturn.m) transects transports

(calc_transports.m) zonal mean tracer fields (calc_zonmean_T.m) and

meridional heat and fresh water transports (calc_MeridionalTransport.m)

The results are stored to disk and later displayed.

16

rdmds2gcmfaces.m
mygrid.LATS_MASKS
mygrid.LINES_MASKS
(calc_barostream.m)
(calc_overturn.m)
(calc_transports.m)
(calc_zonmean_T.m)
(calc_MeridionalTransport.m)

The second part of gcmfaces_demo.m focuses on data processing fea-

tures such as bin average, interpolation, smoothing and format conversions.

We want to point the reader to example_smooth.m in particular. The

smoother indeed consists in time stepping a diffusion equation, which involves

computing gradients (calc_T_grad.m) and divergences (calcUV_div.m)

Such operations may be of interest to many users. They also give us an op-

portunity to explain the need for ’exchange’ routines.

Assume that you want e.g. to compute spatial derivatives of a gridded

tracer field T in some ocean domain D delimited by a contour C. It should

be clear that you need to know T not only inside of D but also for the

neighboring grid points that lie right accross C. This thought experiment

applies to the specific case where D is one grid face of Fig.2. In this case,

to compute gradients on face 1 e.g., you will need T from faces 2, 3, and 5

neighbors. Exchanging tracer data between neighboring faces is the purpose

of exch_T_N.m as illustrated in calc_T_grad.m . To exchange velocity

data, exch_UV_N.m should be used instead (see calcUV_div.m)

The third part of gcmfaces_demo.m focuses on plotting capabili-

ties. A pre-requisite to most plotting operations are format conversions.

Indeed common matlab plotting routines expect simple array inputs. Let

us start with the quick and dirty method that does not deal with geograph-

ical coordinates. Here we use convert2array.m to assemble the faces

data into one array, and then imagesc. Fig.4 is the result for ocean bottom

depth. The faces numbers were rotated and placed consistent with the way

convert2array.m operates for this grid (compare with Fig.2). For basic

geographical coordinates displays, we use convert2pcol.m then pcolor,

leading to Fig.5 Finally, gcmfaces relies on m_map for geographical projec-

tions. The m_map_gcmfaces front-end to m_map deals with data format

conversions, and is capable of producing Fig.6.

17

gcmfaces_demo.m
example_smooth.m
(calc_T_grad.m)
(calcUV_div.m)
exch_T_N.m
calc_T_grad.m
exch_UV_N.m
calcUV_div.m)
gcmfaces_demo.m
convert2array.m
convert2array.m
convert2pcol.m
gcmfaces
m_map
m_map_gcmfaces
m_map

Figure 4: same field as in Fig.2, but once the 5 faces have been assembled

into one array, using convert2array.m

3.2 Functions Inventory

The vast majority of routines include a help section that can be accessed

from within matlab. It tyipcally states the object of the routine, its input

parameters, and its output results. There is no point in duplicating this

information here in details. The routines are organized by topics in sub-

directories that we document below (Tabs.4-7).

18

Table 4: Inventory of functions.

./

gcmfaces demo.m demonstrates various capabilities.

gcmfaces global.m path and global variables

gcmfaces init.m run tests at download

@gcmfaces/ gcmfaces class definition and methods

abs.m, and.m, angle.m, cat.m, cos.m, cumsum.m,

cut T N.m, diff.m, display.m, eq.m, exch T N.m,

exch UV.m, exch UV N.m, exp.m, find.m,

gcmfaces.m, ge.m, get.m, gt.m, imag.m, isnan.m,

le.m, log2.m, lt.m, m ll2xy.m, max.m, mean.m,

median.m, min.m, minus.m, mk3D.m, mrdivide.m,

mtimes.m, nanmax.m, nanmean.m, nanmedian.m,

nanmin.m, nanstd.m, nansum.m, ne.m, not.m, or.m,

plus.m, power.m, rdivide.m, real.m, repmat.m,

set.m, sin.m, sqrt.m, squeeze.m, std.m,

subsasgn.m, subsref.m, sum.m, tan.m, times.m,

uminus.m, uplus.m, zeros.m,

19

Table 5: Inventory of functions (continued).

ecco v4/ routines specific to the analysis of ECCO v4 estimates

alldiag load.m loads basic diags ecco results for plot by basic diags ecco disp

basic diags ecco.m compute a set of basic oceano diagnostics

basic diags ecco disp.m display results of basic diags ecco.m

comp driver.m wraps up cost and physics computations

plot driver.m wraps up cost and physics results display

cost altimeter.m compute ecco v4 altimeter cost function for SSH

cost altimeter disp.m display ecco v4 altimeter cost function for SSH

cost bp.m compute ecco v4 altimeter cost function for GRACE

cost sst.m compute ecco v4 altimeter cost function for SST

cost summary.m display costfunction0000 etc.

cost xx.m compute ecco v4 altimeter cost function for CONTROLS

gcmfaces remap.m remap a lat-lon grid product to a gcmfaces grid

v4 basin.m obtain the mask of an ocean basin

v4 extract ll.m extract the lat-lon part of the grided field

v4 read bin.m read binary file (no meta file)

gcmfaces IO/ read/write data from/to disk

convert2gcmfaces.m, grid load.m,

grid load native.m, rdmds.m, rdmds2gcmfaces.m,

rdmds2workspace.m, rdmds2workspace list.m,

read2memory.m, write2file.m,

20

Table 6: Inventory of functions (continued).

gcmfaces calc/ physical diagnostics computations

calc MeridionalTransport.m, calc T grad.m,

calc UEVNfromUXVY.m, calc UV div.m,

calc barostream.m, calc boxmean T.m,

calc overturn.m, calc transports.m,

calc zonmean T.m, calc zonmedian T.m,

disp transport.m, gcmfaces bindata.m,

gcmfaces edge mask.m, gcmfaces lines transp.m,

gcmfaces lines zonal.m, gcmfaces section.m,

gcmfaces subset.m,

gcmfaces convert/ format conversions; to and from gcmfaces class

convert2arctic.m, convert2array.m,

convert2array cube.m, convert2array ll.m,

convert2array llc.m, convert2array llpc.m,

convert2cube.m, convert2pcol.m,

convert2pcol cube.m, convert2pcol ll.m,

convert2pcol llc.m, convert2pcol llpc.m,

convert2southern.m, convert2vector.m,

gcmfaces exch/ data exchange between neighboring faces

exch T N cube.m, exch T N ll.m, exch T N llc.m,

exch T N llpc.m, exch UV N cube.m,

exch UV N ll.m, exch UV N llc.m,

exch UV N llpc.m, exch UV cube.m, exch UV ll.m,

exch UV llc.m, exch UV llpc.m,

21

Table 7: Inventory of functions (continued).

gcmfaces maps/ m map front end and plot related tools

gcmfaces cmap cbar.m, m map 1face.m,

m map 1face uv.m, m map gcmfaces.m,

m map gcmfaces movie.m, m map gcmfaces uv.m,

m map gcmfaces uvrotate.m,

gcmfaces misc/ miscellaneous functions

ccaa.m, convertR4toR4nonan.m, convertR8toR4.m,

density.m, depthStretch.m, depthStretchPlot.m,

diff mat.m, gcmfaces msg.m, imagescnan.m,

input list check.m, runmean.m, sym g.m,

write2tex.m,

gcmfaces smooth/ smoothing and extrapolation via diffusion equations

diffsmooth2D.m, diffsmooth2D div inv.m,

diffsmooth2D extrap fwd.m,

diffsmooth2D extrap inv.m, diffsmooth2Drotated.m,

sample analysis/ demonstration routines, called by gcmfaces demo.m

basic diags compute v3 or v4.m,

basic diags display transport.m,

basic diags display v3 or v4.m,

line greatC TUV MASKS v3.m,

line greatC TUV MASKS v4.m, plot one field.m,

plot std field.m,

sample processing/ demonstration data for use in gcmfaces demo.m

example bin average.m, example griddata.m,

example interp.m, example smooth.m,

22

Figure 5: as Fig.2 but in geographical coordinates, using convert2pcol

23

Figure 6: as Fig.2 but in geographical coordinates, using m map gcmfaces

24

	Software Download and Update Procedures
	The Basis of gcmfaces
	Introduction
	The gcmfaces Class
	Specifying Grids

	Higher Level Functions
	Illustrative Examples
	Functions Inventory

