ECCO Version 4: Parameterized And Resolved Processes

Gaël Forgel

ECCO Meeting MIT

2016/05/16

ntertwined Processes And Estimation Problems

2016 ECCO meeting

Externally forced Variability Ocean State (Im)Balances and Trends

Internally Generated Variability

This presentation (which does not address energetics) will consider this problem from complementary point of views

Forget (in prep.)

Gaël Forget

In ECCO v4-r2

2016 ECCO meeting

Relating observed Altimetric And In-Situ variability

2016 ECCO meeting

Top: log10 of **altimetry** variance. From bin average RADS data set (1 degree, daily).

Bottom: same but estimated based on in situ steric height anomalies (profile data - seasonal cycle) + 2.7cm instr. error (FP 2015) + BP varability (ECCO v4-r2) + seasonal cycle (ECCO v4-r2)

Altimetry And ECCO Frequency Spectra

2016 ECCO meeting

10¹

Large-Scale

Meso-scale

Forget and Ponte 2015 (PO)

Gaël Forget Daily Pointwise V. Large-Scale 2016 ECCO Uncertainty Levels meeting

Monthly sea level anomaly over the central Labrador sea in ECCO v4-r2 displayed with 95% misfit interval computed from large-scale model-data misfits (red shading) or daily grid-scale model-data misfits (blue shading). The black curve is the corresponding altimetric average (large-scale).

This plot was generated from large-scale and daily grid-scale model-data misfits (Forget and Ponte 2015) available at <u>ftp://mit.ecco-group.org/</u><u>ecco_for_las/version_4/release2/nctiles_remotesensing/sealevel/</u>

Forced V. Intrinsic Sea Level Variability

2016 ECCO meeting

Fraction of intrinsic large-scale SLA variance in 1/12 deg. model.

Reproduced From Serazin et al 2015

Large Scale SLA cost function

ECCO version 4 release 2 (http://hdl.handle.net/ 1721.1/102062)

Altimetric And In-Situ Instraints On Eddy Transpor

2016 ECCO meeting

Figure 5. Sensitivity to \mathcal{K}_{gm} associated with 1992–2001 altimetry (top), 1992–2011 altimetry (middle), and Argo T and S profiles (bottom). More than 98% of Argo profiles were collected after 2001. In each case, the squared model–data distance J is selected accordingly, and $\frac{\partial J}{\partial \mathcal{K}_{gm}}$ is computed with the adjoint model.

Gaël Forget Tans

Estimated Turbulent Tansport Parameters

2016 ECCO meeting

Forget, Ferreira, Liang 2015 (05)

Emerging Questions

2016 ECCO meeting

Forget, Ferreira, Liang 2015 (05)

2016 ECCO meeting

Internal waves (Munk 1981)

Forget (in prep.)

Estimated Variograms And Spectral Slopes 2016 ECCO meeting

McCaffrey, Fox-Kemper, Forget 2015 (JPO)

Eddy Indentification, Tracking, And Statistics

2016 ECCO meeting

Ashkezari, Hill, Follett, Forget, and Follows (in prep.)

Outlook

- ECCO v4, input data, misfits, and uncertainty fields: allow users to assess
 quality of fit and are a useful research tool in their own right. They are
 included in release 2 (see ecco-group.org and eccco2016gf1.pdf slides).
- ECCO v4 can be viewed as an effort to partition large-scale V eddy signals: subtracting it from the data allow to focus on intrinsic variability – to the extent that large-scale variability is predominantly forced.
- The estimation of time-mean turbulent transport parameters in ECCO v4: was essential to an improved fit to in situ data and reduce spurious model drifts. Many question remains even w.r.t. time mean balances. A general question is whether available data may allow for time-variable inversions.
- Analysis of meso-scale and small-scale variability from observations: is a very complementary approach to what we do in ECCO – most immediately to refine our understanding of errors but also more generally.