| 1 |
C $Header: /u/gcmpack/MITgcm/pkg/ex3/ex3_xy_rx.template,v 1.1 2005/10/16 06:55:48 edhill Exp $ |
| 2 |
C $Name: $ |
| 3 |
|
| 4 |
#include "EX3_OPTIONS.h" |
| 5 |
|
| 6 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
| 7 |
CBOP 0 |
| 8 |
C !ROUTINE: EX3_XY_RX |
| 9 |
|
| 10 |
C !INTERFACE: |
| 11 |
SUBROUTINE EX3_XY_RX( |
| 12 |
I gtype, |
| 13 |
B phi, |
| 14 |
I myThid ) |
| 15 |
|
| 16 |
C !DESCRIPTION: |
| 17 |
C Perform an exchange for 2D scalars located at either Arakawa mass |
| 18 |
C [M|T] or vorticity [Z|V] points. |
| 19 |
|
| 20 |
C !USES: |
| 21 |
IMPLICIT NONE |
| 22 |
#include "SIZE.h" |
| 23 |
#include "EEPARAMS.h" |
| 24 |
#include "EESUPPORT.h" |
| 25 |
#include "EX3_SIZE.h" |
| 26 |
#include "EX3_PARAMS.h" |
| 27 |
#include "EX3_TOPOLOGY.h" |
| 28 |
|
| 29 |
C !INPUT PARAMETERS: |
| 30 |
C gtype :: grid type: [M|T]=mass point, [Z|V]=vorticity point |
| 31 |
C phi :: Array with overlap regions to be exchanged |
| 32 |
C myThid :: My thread id. |
| 33 |
CHARACTER*(*) gtype |
| 34 |
_RX phi(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 35 |
INTEGER myThid |
| 36 |
CEOP |
| 37 |
|
| 38 |
C !LOCAL VARIABLES: |
| 39 |
INTEGER iloc,in,nN |
| 40 |
CHARACTER*(MAX_LEN_MBUF) msgbuf |
| 41 |
C |
| 42 |
INTEGER |
| 43 |
I bufftag, sendProc, recvProc, |
| 44 |
I il,ih,is, jl,jh,js, kl,kh,ks, |
| 45 |
I io1,jo1,ko1, |
| 46 |
I idl1,idh1, jdl1,jdh1, kdl1,kdh1 |
| 47 |
INTEGER |
| 48 |
I i_sendtile, i_recvtile |
| 49 |
LOGICAL along_i |
| 50 |
CHARACTER*(1) commType |
| 51 |
INTEGER msgID(nSx*nSy) |
| 52 |
C |
| 53 |
#ifdef ALLOW_USE_MPI |
| 54 |
INTEGER mpiStatus(MPI_STATUS_SIZE) |
| 55 |
INTEGER mpiRc |
| 56 |
INTEGER wHandle |
| 57 |
#endif |
| 58 |
|
| 59 |
idl1 = 1-OLx |
| 60 |
idh1 = sNx+OLx |
| 61 |
jdl1 = 1-OLy |
| 62 |
jdh1 = sNy+OLy |
| 63 |
kdl1 = 1 |
| 64 |
kdh1 = 1 |
| 65 |
kl = 1 |
| 66 |
kh = 1 |
| 67 |
ks = 1 |
| 68 |
|
| 69 |
commType(1:1) = 'P' |
| 70 |
#ifdef ALLOW_USE_MPI |
| 71 |
commType(1:1) = 'M' |
| 72 |
#endif |
| 73 |
|
| 74 |
C As with EXCH2, tile<->tile communication is synchronized through |
| 75 |
C thread 1. |
| 76 |
CALL BAR2(myThid) |
| 77 |
|
| 78 |
IF (gtype(1:1) .EQ. 'M' .OR. gtype(1:1) .EQ. 'T') THEN |
| 79 |
|
| 80 |
C phi is a scalar located at Arakawa mass (cell-center) points |
| 81 |
|
| 82 |
C First send |
| 83 |
DO iloc = myBxLo(myThid), myBxHi(myThid) |
| 84 |
i_sendtile = ex3_p_itile(iloc) |
| 85 |
nN = ex3_e_n(i_sendtile) |
| 86 |
DO in = 1,nN |
| 87 |
i_recvtile = ex3_e_iopt(in,i_sendtile) |
| 88 |
CALL EX3_GET_BUFFTAG( |
| 89 |
I i_sendtile, i_recvtile, in, |
| 90 |
O bufftag, |
| 91 |
I myThid ) |
| 92 |
recvProc = ex3_t_iproc(i_recvtile) |
| 93 |
|
| 94 |
C ===== I direction ===== |
| 95 |
il = ex3_e_dat(2,1,in,i_sendtile) |
| 96 |
IF ( ex3_e_dat(1,1,in,i_sendtile) .EQ. 0 ) THEN |
| 97 |
along_i = .FALSE. |
| 98 |
ih = ex3_e_dat(3,1,in,i_sendtile) |
| 99 |
ELSE |
| 100 |
C Here, "along" means the i dimension is perpendicular to |
| 101 |
C the "seam" between the two tiles |
| 102 |
along_i = .TRUE. |
| 103 |
IF (IABS(ex3_e_dat(1,1,in,i_sendtile)) .EQ. 1) THEN |
| 104 |
ih = il + ex3_e_dat(1,1,in,i_sendtile) * OLx |
| 105 |
ELSE |
| 106 |
ih = il + ex3_e_dat(3,1,in,i_sendtile) |
| 107 |
ENDIF |
| 108 |
ENDIF |
| 109 |
is = 1 |
| 110 |
IF (il .GT. ih) is = -1 |
| 111 |
|
| 112 |
C ===== J direction ===== |
| 113 |
jl = ex3_e_dat(2,2,in,i_sendtile) |
| 114 |
IF ( ex3_e_dat(1,2,in,i_sendtile) .EQ. 0 ) THEN |
| 115 |
jh = ex3_e_dat(3,2,in,i_sendtile) |
| 116 |
ELSE |
| 117 |
IF (IABS(ex3_e_dat(1,2,in,i_sendtile)) .EQ. 1) THEN |
| 118 |
jh = jl + ex3_e_dat(1,2,in,i_sendtile) * OLy |
| 119 |
ELSE |
| 120 |
jh = jl + ex3_e_dat(3,2,in,i_sendtile) |
| 121 |
ENDIF |
| 122 |
ENDIF |
| 123 |
js = 1 |
| 124 |
IF (jl .GT. jh) js = -1 |
| 125 |
|
| 126 |
io1 = 0 |
| 127 |
jo1 = 0 |
| 128 |
ko1 = 0 |
| 129 |
CALL EX3_SEND_RX1( |
| 130 |
I bufftag, recvProc, |
| 131 |
I along_i, |
| 132 |
I il,ih,is, jl,jh,js, kl,kh,ks, |
| 133 |
I io1,jo1,ko1, |
| 134 |
I idl1,idh1, jdl1,jdh1, kdl1,kdh1, |
| 135 |
I phi, |
| 136 |
C B buff, n_buff, msgID, |
| 137 |
B EX3_B_RX(1,in,iloc), EX3_MAX_BL, msgID(iloc), |
| 138 |
I commType, |
| 139 |
I myThid ) |
| 140 |
ENDDO |
| 141 |
ENDDO |
| 142 |
|
| 143 |
C Then receive |
| 144 |
DO iloc = myBxLo(myThid), myBxHi(myThid) |
| 145 |
i_recvtile = ex3_p_itile(iloc) |
| 146 |
nN = ex3_e_n(i_recvtile) |
| 147 |
DO in = 1,nN |
| 148 |
i_sendtile = ex3_e_iopt(in,i_sendtile) |
| 149 |
CALL EX3_GET_BUFFTAG( |
| 150 |
I i_sendtile, i_recvtile, in, |
| 151 |
O bufftag, |
| 152 |
I myThid ) |
| 153 |
sendProc = ex3_t_iproc(i_sendtile) |
| 154 |
|
| 155 |
C ===== I direction ===== |
| 156 |
il = ex3_e_dat(2,1,in,i_sendtile) |
| 157 |
IF ( ex3_e_dat(1,1,in,i_sendtile) .EQ. 0 ) THEN |
| 158 |
along_i = .FALSE. |
| 159 |
ih = ex3_e_dat(3,1,in,i_sendtile) |
| 160 |
ELSE |
| 161 |
C Here, "along" means the i dimension is perpendicular to |
| 162 |
C the "seam" between the two tiles |
| 163 |
along_i = .TRUE. |
| 164 |
IF (IABS(ex3_e_dat(1,1,in,i_sendtile)) .EQ. 1) THEN |
| 165 |
ih = il + ex3_e_dat(1,1,in,i_sendtile) * OLx |
| 166 |
ELSE |
| 167 |
ih = il + ex3_e_dat(3,1,in,i_sendtile) |
| 168 |
ENDIF |
| 169 |
ENDIF |
| 170 |
is = 1 |
| 171 |
IF (il .GT. ih) is = -1 |
| 172 |
|
| 173 |
C ===== J direction ===== |
| 174 |
jl = ex3_e_dat(2,2,in,i_sendtile) |
| 175 |
IF ( ex3_e_dat(1,2,in,i_sendtile) .EQ. 0 ) THEN |
| 176 |
jh = ex3_e_dat(3,2,in,i_sendtile) |
| 177 |
ELSE |
| 178 |
IF (IABS(ex3_e_dat(1,2,in,i_sendtile)) .EQ. 1) THEN |
| 179 |
jh = jl + ex3_e_dat(1,2,in,i_sendtile) * OLy |
| 180 |
ELSE |
| 181 |
jh = jl + ex3_e_dat(3,2,in,i_sendtile) |
| 182 |
ENDIF |
| 183 |
ENDIF |
| 184 |
js = 1 |
| 185 |
IF (jl .GT. jh) js = -1 |
| 186 |
|
| 187 |
CALL EX3_RECV_RX1( |
| 188 |
I bufftag, sendProc, |
| 189 |
I along_i, |
| 190 |
I il,ih,is, jl,jh,js, kl,kh,ks, |
| 191 |
I idl1,idh1, jdl1,jdh1, kdl1,kdh1, |
| 192 |
I phi, |
| 193 |
C B buff, n_buff, |
| 194 |
B EX3_B_RX(1,in,iloc), EX3_MAX_BL, |
| 195 |
I commType, |
| 196 |
I myThid ) |
| 197 |
ENDDO |
| 198 |
ENDDO |
| 199 |
|
| 200 |
ELSEIF (gtype(1:1) .EQ. 'Z' .OR. gtype(1:1) .EQ. 'V') THEN |
| 201 |
|
| 202 |
C phi is a scalar located at Arakawa vorticity (cell-corner) |
| 203 |
C points |
| 204 |
|
| 205 |
ELSE |
| 206 |
WRITE(msgbuf,'(3a)') |
| 207 |
& 'EX3_XY_RX ERROR: grid type ''', gtype(1:1), |
| 208 |
& ''' is invalid -- please use one of [MTZV]' |
| 209 |
CALL print_error(msgbuf, mythid) |
| 210 |
STOP 'ABNORMAL END: S/R EX3_XY_RX' |
| 211 |
ENDIF |
| 212 |
|
| 213 |
CALL BAR2(myThid) |
| 214 |
|
| 215 |
RETURN |
| 216 |
END |
| 217 |
|
| 218 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
| 219 |
|
| 220 |
CEH3 ;;; Local Variables: *** |
| 221 |
CEH3 ;;; mode:fortran *** |
| 222 |
CEH3 ;;; End: *** |