| 1 |
enderton |
1.1 |
function [a] = tile(b,varargin) |
| 2 |
|
|
% a=tile(b,n); |
| 3 |
|
|
% |
| 4 |
|
|
% Extract single tile from cubed array |
| 5 |
|
|
% |
| 6 |
|
|
% b can have dimensions (M*6,M,Nr) or (M,M,Nr,6) |
| 7 |
|
|
% |
| 8 |
|
|
% n can be vector of integers between 1 and 6 |
| 9 |
|
|
|
| 10 |
|
|
if nargin==1 |
| 11 |
|
|
n=1:6; |
| 12 |
|
|
else |
| 13 |
|
|
n=varargin{1}; |
| 14 |
|
|
end |
| 15 |
|
|
|
| 16 |
|
|
if min(n)<1 | max(n)>6 |
| 17 |
|
|
disp(sprintf('n=',n)); |
| 18 |
|
|
error('tile: second argument n is out of range'); |
| 19 |
|
|
end |
| 20 |
|
|
|
| 21 |
|
|
if size(b,ndims(b))==6 |
| 22 |
|
|
switch ndims(b) |
| 23 |
|
|
case 3, |
| 24 |
|
|
a=b(:,:,n); |
| 25 |
|
|
case 4, |
| 26 |
|
|
a=b(:,:,:,n); |
| 27 |
|
|
otherwise |
| 28 |
|
|
error('tile: it seems that b has too many dimensions'); |
| 29 |
|
|
end |
| 30 |
|
|
elseif size(b,2)==6 |
| 31 |
|
|
m=size(b,1); |
| 32 |
|
|
k=1; |
| 33 |
|
|
for N=n; |
| 34 |
|
|
switch ndims(b) |
| 35 |
|
|
case 3, |
| 36 |
|
|
a(:,:,k)=squeeze(b(:,N,:)); |
| 37 |
|
|
case 4, |
| 38 |
|
|
a(:,:,:,k)=squeeze(b(:,N,:,:)); |
| 39 |
|
|
otherwise |
| 40 |
|
|
error('tile: it seems that b has too many dimensions'); |
| 41 |
|
|
end |
| 42 |
|
|
k=k+1; |
| 43 |
|
|
end |
| 44 |
|
|
elseif size(b,1)==size(b,2)*6 |
| 45 |
|
|
m=size(b,2); |
| 46 |
|
|
k=1; |
| 47 |
|
|
for N=n; |
| 48 |
|
|
switch ndims(b) |
| 49 |
|
|
case 2, |
| 50 |
|
|
a(:,:,k)=b((N-1)*m+1:N*m,:); |
| 51 |
|
|
case 3, |
| 52 |
|
|
a(:,:,:,k)=b((N-1)*m+1:N*m,:,:); |
| 53 |
|
|
otherwise |
| 54 |
|
|
error('tile: it seems that b has too many dimensions'); |
| 55 |
|
|
end |
| 56 |
|
|
k=k+1; |
| 57 |
|
|
end |
| 58 |
|
|
else |
| 59 |
|
|
disp(sprintf('Size(b) = %i %i %i %i %i %i',size(b))); |
| 60 |
|
|
error('tile: Size of first argument is not consistent with cubed array'); |
| 61 |
|
|
end |