Parent Directory
|
Revision Log
|
Revision Graph
o Initial check in.
1 | enderton | 1.1 | function [X] = longitude(x) |
2 | % X=longitude(x); | ||
3 | % | ||
4 | % tries to determine best range of longitude (e.g. -180<180 or 0<360) | ||
5 | % so that coordinate (x) doesn't span a discontinuity. | ||
6 | % | ||
7 | |||
8 | % also works for radians which are assumed if range of x<=2*pi | ||
9 | |||
10 | minx=min(min(min(x))); | ||
11 | maxx=max(max(max(x))); | ||
12 | %if maxx-minx < 2.2*pi | ||
13 | % units=180/pi; | ||
14 | %else | ||
15 | units=1; | ||
16 | %end | ||
17 | minx=min(min(min(x*units))); | ||
18 | maxx=max(max(max(x*units))); | ||
19 | |||
20 | X=mod(720+x*units,360); | ||
21 | maxP=max(max(max(X))); | ||
22 | minP=min(min(min(X))); | ||
23 | |||
24 | XX=mod(X+180,360)-180; | ||
25 | maxM=max(max(max(XX))); | ||
26 | minM=min(min(min(XX))); | ||
27 | |||
28 | if maxP-minP > maxM-minM | ||
29 | X=XX; | ||
30 | end |
ViewVC Help | |
Powered by ViewVC 1.1.22 |