
JPL	  ECCO	  v3.1	  Optimization	  Package	  
by	  

Benny	  Cheng,	  Ou	  Wang,	  and	  Ichiro	  Fukumori	  
	  
	  
	  

	  
Section	  1.	  	  Introduction	  
	  
The	  JPL	  ECCO	  v3.1	  optimization	  package	  employs	  the	  iterative	  Nocedal	  L-‐BFGS	  quasi-‐
Newton	  minimization	  method	  in	  parallel	  using	  MPI.	  The	  accompanying	  line	  search	  
algorithm	  for	  the	  iterative	  solution	  uses	  a	  quadratic	  fit	  of	  the	  cost	  function	  using	  the	  
Hessian	  with	  safeguards	  for	  large	  stepsizes.	  	  
	  
	  
Section	  1.1	  General	  Features	  
	  
The	  Nocedal	  L-‐BFGS	  (limited-‐memory	  Broyden–Fletcher–Goldfarb–Shanno) quasi-‐
Newton	  minimization	  method	  applies	  the	  variable	  storage	  technique	  of	  using	  changes	  in	  
the	  cost	  gradient	  from	  one	  iteration	  to	  another	  to	  obtain	  information	  about	  the	  local	  
Hessian	  of	  the objective	  (cost)	  function,	  without	  the	  need	  for	  exact	  line	  searches.	  A	  line	  
search	  is	  said	  to	  be	  exact	  if	  the	  minimum	  value	  of	  the	  cost	  function	  along	  the	  direction	  
of	  the	  line	  is	  actually	  attained	  by	  the	  search	  algorithm,	  which	  is	  usually	  quite	  prohibitive	  
in	  the	  amount	  of	  time	  and	  computational	  resources	  required	  for	  complicated	  cost	  
functions.	  Variable	  storage	  refers	  to	  the	  amount	  of	  stored	  information	  needed	  to	  
approximate	  the	  Hessian	  matrix	  that	  are	  between	  O(n )	  and	  O( 2n )	  storage	  locations	  in	  
size,	  where	  n	  is	  the	  size	  of	  the	  control	  space.	  The	  implementation	  follows	  closely	  that	  
given	  in	  the	  paper	  "Some	  Numerical	  Experiments	  with	  Variable	  Storage	  Quasi-‐Newton	  
Algorithms"	  	  by Gilbert	  and	  LeMarechal	  (1989)[GL].	   
	  
	  
Section	  1.2	  Methodology	  
	  
The	  cost	  function	  ff	  	  computed	  at	  the	  end	  of	  the	  forward	  code,	  is	  generally	  a	  
weighted	  sum	  of	  squares	  of	  model-‐data	  differences.	  For	  a	  given	  set	  of	  control	  vectors	  
xx,	  the	  adjoint	  code	  computes	  the	  cost	  gradient	  gg	  with	  respect	  to	  each	  element	  of	  
the	  controls.	  In	  optimization,	  the	  above	  pair	  of	  forward	  and	  adjoint	  computations	  
(we	  shall	  call	  this	  an	  iteration)	  are	  repeated	  as	  many	  times	  as	  necessary,	  to	  solve	  for	  
the	  control	  vectors	  xx	  that	  decrease	  the	  cost	  function	  at	  each	  iteration	  towards	  an	  
acceptable	  minimum.	  The	  optimization	  process	  is	  governed	  by	  the	  executable	  
optim.x	  and	  its	  parameter	  files	  data.optim	  and	  data.ctrl	  (see	  1.5	  below),	  and	  is	  
executed	  after	  a	  forward	  and	  adjoint	  model	  run,	  as	  described	  in	  the	  subsequent	  
sections.	  
	  



	  
Section 1.2.1  Initial iterations (Steepest Descent) 
 
An initial iteration of forward and adjoint run is named iter0, usually done with xx=0  as 
there are no prior gradient information available. In the next iteration, iter1, the best 
(steepest descent) direction dd that will lead to a decrease of the cost function is given by  
 

(1)                                    -ggdd                                           =      
 
where gg is the gradient obtained from the adjoint run. A suitable choice of stepsize t to 
move in this direction is given by 
 

(2) ggf0fft                             /)(2                                2
−=    

 

 
f0 is a preset scalar set to .99*ff. (see the paper [GL Section 2.6]).  
 
 
 
Once a suitable stepsize t and direction dd has been found, as above, the new control 
becomes 
 

(3)                          dd t xx    xxnew                                    ⋅+=  
 
where xx is the previous set of controls (xx = 0 for iter1) .  
 
Derivation of the new control xxnew is considered the initial solution step. Running the 
model forward with xxnew is expected to provide a lower cost ffnew over the previous 
iteration’s cost ff with new gradient ggnew. The iteration procedure now repeats (iter1) 
by setting xx = xxnew, gg = ggnew, and treats this as the starting point for the next 
iteration (iter2 in Section 1.2.2). The following shows the input and output files from the 
optimization executable optim.x for each iteration. 
 
 

INPUT data.ctrl Control variable information 
 data.optim Optimization parameters 
 ecco_ctrl Initial control vector 
 ecco_cost Initial cost gradient 

 costfunction Initial costfunction values 
   

OUTPUT OPWARMI Optimization parameters 
 OPWARMD Gradient information 
 ecco_ctrl Steepest descent control vector 
 op_i#.64 Diagnostic file for the optimization process 

where # is the iteration number 
 



 
Section 1.2.2  Trial Step (Quasi-Newton)   
 
For the next iteration (third iteration, iter2), instead of proceeding with another steepest 
descent optimization, a more sophisticated technique using the Nocedal L-BFGS quasi-
Newton algorithm is employed to find the next solution. An approximate Hessian H is 
computed with available past gradients (see [GL Section 2.4]), and used to obtain an 
alternate direction defined as 
                                                   

(4)                                              gg-Hdd                                      -1=  
 
The above equation is the direction that points to the minimum value if the cost function 
were entirely a 2nd order quadratic function of the controls. For general cost functions, 
this is approximated by the 2nd order Taylor expansion. The past information used in 
evaluating this new direction consists of pairs of gradient and control differences 
(gg(k+1)-gg(k),xx(k+1)-xx(k)) of previous successive iterations which are saved into the 
file OPWARMD and are employed as described below. To simplify notation, we define 
 

kkk

kk

-1

sy1/p               
(5)                   xx(k),-1)xx(ks  gg(k),-1)gg(ky               

 ,HB               

,=

+=+=

=
 

 
where < , > is the usual inner product. Then the recursive BFGS formula ([GL eqn 2.10]) 
 
 

(6)ssp)syp(I)Bysp(IB          T
kkk

T
kkkk

T
kkk1k                        +−−=+

 
 
provides an approximate inverse Hessian Bm for a given number of known pairs of  
(yk,sk), k=m-n,…m-1, with Bm-n a diagonal matrix (see [GL eqn 4.9]); 
 

( ) 1( ) ( ) ( ) ( ) ( )
- - - - - - - - - -, , / ,        i i i i i

m n m n m n m n m n m n m n m n m n m n m n m n m n m n

−

− − − −= + −B p y y p y y p s s y y s s (6b)
 

. The optimization parameter NUPDATES = n in data.optim sets the maximum number 
of past gradient and control differences to be used for estimating the Hessian, and the 
default is 4. The choice of n defines the “variable storage” of the algorithm. The new 
control is then given by xxnew = xx + dd, and used as input to the next iteration.  This is 
the trial step. 
 
 

INPUT data.ctrl Control variables information 
 data.optim Optimization parameters with latest 

costfunction value fc 
 ecco_ctrl Latest iteration control vector 



 ecco_cost Latest iteration cost gradient 
 costfunction Latest iteration costfunction values 
 OPWARMI Optimization parameters 
 OPWARMD Gradients from previous iterations 
   
OUTPUT OPWARMI Updated optimization parameters 
 OPWARMD Updated gradients up to trial step 
 ecco_ctrl Quasi-Newton trial control vector 
 op_i#.64 Diagnostic file for optimization process 

 
 
Section 1.2.3 Solution Step (Line Search with safeguards) 
 
The new controls obtained in the trial step above is generally not a solution (a minimum 
value of the cost function) to the cost minimization problem, and could even increase the 
cost significantly. It is in fact only an acceptable iterative (and exact) solution if the cost 
function is exactly a pure quadratic function of the controls, as mentioned before in 1.2.2. 
The line search technique applied here fits a quadratic function of stepsize t to the points 
(xx,ff) and (xxnew,ffnew) of the trial step, and the known slope <gg,dd> at xx (ie. the 
directional derivative at t=0). We then find the stepsize t by solving for the minimum of 
this quadratic function, i.e.  
 

(7)                   ))ddgg,ff(ffnew*/(2ddgg,t                             −−−=                     

 
The revised control becomes xxc = xx + t*dd. 
 
A set of conditions are employed to check the quality of the line search estimated 
controls xxc. Suppose F(x) is the objective function, evaluated at x, with line search 
carried out in direction d. α  is a positive scalar stepsize.  The so-called Wolfe conditions 
for an acceptable stepsize α  are: 
 
 
 

I) F(x)d,cF(x)d)F(x 1 ∇+≤+ αα   (sufficient decrease condition) (8) 

II) dF(x),dd),F(x ∇≥+∇ 2cα       (curvature condition)                (9) 

 
1.9c.001c0 21 <=<=<   where    (see [GL eqns (2.5) and (2.6)]). 

 
 
If the Wolfe conditions are satisfied for the stepsize α  = t, then it is deemed a solution. 
We set xx=xxc and go to the next trial step iteration (Section 1.2.2). However, if either 
one of the Wolfe conditions are not satisfied, we reduce the stepsize by half (a 
safeguard), and rerun the forward and adjoint model (another iteration) and check the 
Wolfe conditions again until they are either satisfied or terminate the procedure after 



NFUNC = 3 (defined in data.optim) tries, which then sets xx=latest xxc and deemed a 
solution. 
 

INPUT data.ctrl Control variable information 
 data.optim Optimization parameters with latest 

costfunction value fc 
 ecco_ctrl Latest iteration control vector 
 ecco_cost Latest iteration cost gradient 
 costfunction Latest iteration costfunction values 
 OPWARMI Optimization parameters 
 OPWARMD Gradients from previous iterations 
   
OUTPUT OPWARMI Updated optimization parameters 
 OPWARMD No changes 
 ecco_ctrl Control vector from safeguarded line search 
 op_i#.64 Diagnostic file for optimization process 

 
 
 
Section 1.2.4 Examples with a 2-D Rosenbrock Function 
 
Tests done with the above methodology with the 2-dimensional Rosenbrock function (see  
http://en.wikipedia.org/wiki/Rosenbrock_function) verifies that it does converge 
superlinearly (http://en.wikipedia.org/wiki/Rate_of_convergence) to the required 
minimum. In the plot below, the first column shows the contours of the 2-d Rosenbrock 
function, and the trajectory of the solutions (connected dots) for different initial starting 
points, as it approaches the unique minimum (1,1).  The second and third columns show 
the cost value of the Rosenbrock function and the Euclidean distance of each solution 
point to the minimum as functions of iterations.  



 
 
 
 
Section 1.3 Checking for solutions 
 
The shell script checkop outputs the iterations that are also solution steps. It does this by 
doing a grep for "1   1.0E+00"  in the diagnostic files op_i#.64, since this line only exists 
when a solution step (section 1.2.3) completes.  
 
 



For example: 
 
% checkop 
op_i43.64:    1   1.0E+00     0     1.7837E+08   5.7E+05   3.2E+02   6.3E+00 
op_i44.64:    1   1.0E+00     0     1.7658E+08   7.4E+05   3.2E+02   6.0E+00 
op_i46.64:    1   1.0E+00     0     1.7518E+08   4.9E+05   3.2E+02   8.1E+00 
 
 
The first column shows that iterations 43,44, and 46 are solutions. The next 3 columns 
can be ignored. The 4th column is the costfunction value, 5th is the norm of the cost 
gradient, 6th is the norm of the solution control vector, 7th is the norm of difference 
between the solution control and the previous iteration control vector. The most 
important terms to look for are the 4th column which should be monotonically decreasing 
and the 5th column should be generally decreasing, but not necessarily monotonically. 
 
 
 
Section 1.4 Other useful scripts 
 
do_optim_recov:     In some situations, such as a machine crash or incorrect restart,  
OPWARMI and OPWARMD may be erased or corrupted. This script recovers the latest 
OPWARMI and OPWARMD file starting from iter0’s  ecco_ctrl and ecco_cost vectors.  
It requires that all intermediate ecco_ctrl and ecco_cost vectors are preserved and 
available to the script.  To use this script, just specify the optim directory, edit the end 
iteration number desired, and execute.  
 
 
Section 1.5 Data.optim  and Data.ctrl 
 
The optimization executable requires two input files to be present. The following set of 
parameters are provided through the standard input file data.optim. 
 
 
 
 
 
 
  

PARAMETER VALUE 
NUPDATE Maximum number of update pairs (gg(i)-

gg(i-1), xx(i)-xx(i-1)) to be stored in 
OPWARMD to estimate Hessian. 
Currently set to 4. NUPDATE must be > 0  

EPSX Relative precision on xx below which xx 
should not be improved (default 1e-6). 
NOT USED. 



EPSG Relative precision on gg below which 
optimization is considered successful 
(default 1e-6). NOT USED. 

IPRINT Controls verbose (>=1) or non-verbose 
output. Currently set to 10. 

NUMITER Always 1 
ITER_NUM Index of new restart file to be created (not 

necessarily = NUMITER). NOT USED. 
NFUNC Maximum number of safeguarded 

iterations allowed (must be > 0). Currently 
set to 3. 

FC Costfunction value of last iteration 
FMIN NOT USED 
 
 
In the input file data.ctrl, the following parameters are needed: 
 
 

PARAMETER VALUE 
CTRLNAME ecco_ctrl (control vector prefix) 
COSTNAME ecco_cost (cost gradient vector prefix) 
 
 
Section 1.6  OPWARMI and OPWARMD  
 
The optimization outputs two files, a dynamic parameter file OPWARMI and a dynamic 
binary file OPWARMD.  OPWARMI has the following structure: 
 

PARAMETER DESCRIPTION 
n Number of control variables per processor 
fc Cost value of  last iteration 
m = NUPDATES in data.optim 
jmin Integer pointer for OPWARMD  
jmax Integer pointer for OPWARMD 
gnorm Norm of latest gradient gg 
sflag True if line search will be applied in the next iteration 
tflag True if next iteration will be a safeguarded one 
safe_iter Number of safeguarded iterations completed 
stepsize Value of the last iteration stepsize t 
 
 
 
 
 
 



OPWARMD is a binary file and contains the following array structure: 
 

RECORD ARRAY DESCRIPTION 
1 xx(i) Control vector of last iteration i 
2 gg(i) Gradient of last iteration i 
3 xdiff(i)  Diagonal preconditioner (see GL eqn 4.9) 
2*mod(jmax-1,NUPDATE)+4 gg(i)–gg(i-1) Gradient difference for last iteration i 
2*mod(jmax-1,NUPDATE)+5 xx(i)-xx(i-1) Control difference for last iteration i 
 
xdiff(i) = Bjmin  is the diagonal matrix defined in section1.2.2. 
 
Jmax is continuously incremented with each iteration, with  
 

jmax=mod(i-‐1,NUPDATE)+1, 
 

jmin= 1  for  the  first  NUPDATE  values  of  jmax,
mod(jmax,NUPDATE)+1  subsequently. 

 
 
Section 1.7 Capping 
 
Capping of the	  cost	  gradient	  gg	  is	  applied	  in	  optim_readdata.F.	  A	  cap	  can	  be	  set	  
individually	  for	  each	  control	  variable	  by	  changing	  the	  corresponding	  element	  of	  the	  
array	  cvarlimit.	  Currently,	  all	  elements	  of	  cvarlimit	  are	  set	  to	  a	  very	  large	  number	  
(1e4),	  effectively	  applying	  no	  capping.	   
 
 
Section 1.8 Compilation 
 
The optimization package consist of two directories, optim.2 and lsopt.2. The following 
are the instructions for compiling this package: 
 

1. cd to the lsopt.2 directory and edit the Makefile by changing the macro             
 -DMAX_INDEPEND to the total number of control variables in the cost function 
(for MITgcm, this number can be found in the STDOUT output where it is 
defined as nvarlength), and customize the compiler flags to your machine 
(currently using ifort compiler).  

2. Type make and this should produce the liblsopt_ecco.a library.  
3. cd to the optim.2 directory and edit the Makefile by changing the macro                

-DMAX_INDEPEND and compiler flags as in 1) above, as well as the 
INCLUDESDIR to point to the MITgcm build directory. The optimization code 
needs a few header files that can usually be found in the build directory. Also, the 
directory ../lsopt.2 should be included in LIBDIRS (-L../lsopt.2.benny/) and the 
liblsopt_ecco.a library in LIBS (-llsopt_ecco). 

4. Finally, type make and this should generate the optim.x executable. 
 



 
Section 1.9 Run 
 
Create a run directory and cd to this run directory. Copy the executable optim.x over to 
the run directory. Generate the namelists data.optim and data.ctrl as explained in Section 
1.5. Also copy ecco_cost_MIT_CE_000.opt0000 that contains the initial cost gradient gg. 
 
  



 
Section 1.10 Flowchart 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

yes 
 no 
 
 
 
 

yes 

Steepest descent 
direction dd and 

stepsize t 
xxnew=xx+t*dd  

(1.2.1) 

Trial step 
dd=-H-1*gg 

xxnew=xx+dd 

Pass Wolfe’s 
condition? 

Solution 
found. 
xx=xxc 
for next 
iteration 

Line search 
xxc=xx+t*

dd 

Initial iterations 
xx=0 

t=.5*t 


