1 |
dcarroll |
1.1 |
function [x,y]=polarstereo_fwd(phi,lambda,a,e,phi_c,lambda_0) |
2 |
|
|
%POLARSTEREO_FWD transforms lat/lon data to map coordinates for a polar stereographic system |
3 |
|
|
% [X,Y]=POLARSTEREO_FWD(LAT,LONG,EARTHRADIUS,ECCENTRICITY,LAT_TRUE,LON_POSY) |
4 |
|
|
% X and Y are the map coordinates (scalars, vectors, or matrices of equal size). |
5 |
|
|
% LAT and LON are in decimal degrees with negative numbers (-) for S and W. |
6 |
|
|
% EARTHRADIUS is the radius of the earth defined in the projection |
7 |
|
|
% (default is 6378137.0 m, WGS84) |
8 |
|
|
% ECCENTRICITY is the earth's misshapenness |
9 |
|
|
% (default is 0.08181919) |
10 |
|
|
% LAT_TRUE is the latitude of true scale in degrees, aka standard parallel |
11 |
|
|
% (default is -70). Note that some NSIDC data use 70 and some use 71. |
12 |
|
|
% LON_POSY is the meridian in degrees along the positive Y axis of the map |
13 |
|
|
% (default is 0) |
14 |
|
|
% |
15 |
|
|
% The National Snow and Ice Data Center (NSIDC) and Scientific Committee |
16 |
|
|
% on Antarctic Research (SCAR) use a version of the polar stereographic |
17 |
|
|
% projection that Matlab does not have. This file does transformations to |
18 |
|
|
% map coordinates from geographic coordinates to facilitate |
19 |
|
|
% comparisons with other datasets. |
20 |
|
|
% |
21 |
|
|
% Equations from: Map Projections - A Working manual - by J.P. Snyder. 1987 |
22 |
|
|
% http://kartoweb.itc.nl/geometrics/Publications/Map%20Projections%20-%20A%20Working%20manual%20-%20by%20J.P.%20Snyder.pdf |
23 |
|
|
% See the section on Polar Stereographic, with a south polar aspect and |
24 |
|
|
% known phi_c not at the pole. |
25 |
|
|
% |
26 |
|
|
% See also: MINVTRAN, MFWDTRAN. |
27 |
|
|
% |
28 |
|
|
% Written by Andy Bliss, 9/12/2011 |
29 |
|
|
|
30 |
|
|
% Changes since version 01: |
31 |
|
|
% 1. Split into two functions and vectorized code. |
32 |
|
|
|
33 |
|
|
%%%%%%%%%%%%% |
34 |
|
|
%some standard info |
35 |
|
|
%%%%%%%%%%%%% |
36 |
|
|
%WGS84 - radius: 6378137.0 eccentricity: 0.08181919 |
37 |
|
|
% in Matlab: axes2ecc(6378137.0, 6356752.3142) |
38 |
|
|
%Hughes ellipsoid - radius: 6378.273 km eccentricity: 0.081816153 |
39 |
|
|
% Used for SSM/I http://nsidc.org/data/polar_stereo/ps_grids.html |
40 |
|
|
%International ellipsoid (following Snyder) - radius: 6378388.0 eccentricity: 0.0819919 |
41 |
|
|
|
42 |
|
|
%{ |
43 |
|
|
%check the code using Snyder's example. Should get x=-1540033.6; y=-560526.4; |
44 |
|
|
phi=-75; lambda=150; |
45 |
|
|
[x,y]=polarstereo_fwd(phi,lambda,6378388.0,0.0819919,-71,-100); |
46 |
|
|
x,y |
47 |
|
|
|
48 |
|
|
%%%%%%%%%%%% |
49 |
|
|
%check with AntDEM |
50 |
|
|
%%%%%%%%%%%% |
51 |
|
|
%http://nsidc.org/data/docs/daac/nsidc0304_0305_glas_dems.gd.html |
52 |
|
|
% Center Point of Corner Grid Cell |
53 |
|
|
%x y Latitude Longitude |
54 |
|
|
test=[-2812000.0 2299500.0 -57.3452815 -50.7255753 |
55 |
|
|
2863500.0 2299500.0 -57.0043684 51.2342036 |
56 |
|
|
-2812000.0 -2384000.0 -56.8847122 -130.2911169 |
57 |
|
|
2863500.0 -2384000.0 -56.5495152 129.7789915]; |
58 |
|
|
[x,y]=polarstereo_fwd(test(:,3),test(:,4),6378137.0,axes2ecc(6378137.0, 6356752.3),-70,0); |
59 |
|
|
figure,hold on,plot(test(:,1),test(:,2),'.'),plot(x,y,'r+') |
60 |
|
|
[test(:,1) test(:,1)-x],[test(:,2) test(:,2)-y] |
61 |
|
|
%error is less than half a meter (probably just round-off error). |
62 |
|
|
|
63 |
|
|
%%%%%%%%%%%% |
64 |
|
|
%check with Greenland |
65 |
|
|
%%%%%%%%%%%% |
66 |
|
|
%projected from the WGS 84 Ellipsoid, with 70° N as the latitude of true scale and a rotation of 45. |
67 |
|
|
test=[-890000.0 -629000.0 79.9641229 -99.7495626 %center point of cell |
68 |
|
|
1720000.0 -629000.0 73.2101234 24.9126514 |
69 |
|
|
-890000.0 -3410000.0 58.2706251 -59.6277136 |
70 |
|
|
1720000.0 -3410000.0 55.7592932 -18.2336765]; |
71 |
|
|
[x,y]=polarstereo_fwd(test(:,3),test(:,4),6378273,0.081816153,70,-45); %slightly off |
72 |
|
|
[x2,y2]=polarstereo_fwd(test(:,3),test(:,4),6378137.0,0.08181919,70,-45); %correct |
73 |
|
|
figure,hold on,plot(test(:,1),test(:,2),'.'),plot(x,y,'r+'),plot(x2,y2,'gx') |
74 |
|
|
[test(:,1) test(:,1)-x test(:,1)-x2],[test(:,2) test(:,2)-y test(:,2)-y2] |
75 |
|
|
%error is less than half a meter (probably just round-off error). |
76 |
|
|
%} |
77 |
|
|
|
78 |
|
|
%%%%%%%%%%%% |
79 |
|
|
%input checking |
80 |
|
|
%%%%%%%%%%%% |
81 |
|
|
if nargin < 3 || isempty(a) |
82 |
|
|
a=6378137.0; %radius of ellipsoid, WGS84 |
83 |
|
|
end |
84 |
|
|
if nargin < 4 || isempty(e) |
85 |
|
|
e=0.08181919; %eccentricity, WGS84 |
86 |
|
|
end |
87 |
|
|
if nargin < 5 || isempty(phi_c) |
88 |
|
|
phi_c=-70; %standard parallel, latitude of true scale |
89 |
|
|
end |
90 |
|
|
if nargin < 6 || isempty(lambda_0) |
91 |
|
|
lambda_0=0; %meridian along positive Y axis |
92 |
|
|
end |
93 |
|
|
%convert to radians |
94 |
|
|
phi=deg2rad(phi); |
95 |
|
|
phi_c=deg2rad(phi_c); |
96 |
|
|
lambda=deg2rad(lambda); |
97 |
|
|
lambda_0=deg2rad(lambda_0); |
98 |
|
|
|
99 |
|
|
%if the standard parallel is in S.Hemi., switch signs. |
100 |
|
|
if phi_c < 0 |
101 |
|
|
pm=-1; %plus or minus, north lat. or south |
102 |
|
|
phi=-phi; |
103 |
|
|
phi_c=-phi_c; |
104 |
|
|
lambda=-lambda; |
105 |
|
|
lambda_0=-lambda_0; |
106 |
|
|
else |
107 |
|
|
pm=1; |
108 |
|
|
end |
109 |
|
|
|
110 |
|
|
%this is not commented very well. See Snyder for details. |
111 |
|
|
t=tan(pi/4-phi/2)./((1-e*sin(phi))./(1+e*sin(phi))).^(e/2); |
112 |
|
|
% t_alt=sqrt((1-sin(phi))./(1+sin(phi)).*((1+e*sin(phi))./(1-e*sin(phi))).^e); |
113 |
|
|
t_c=tan(pi/4 - phi_c/2)./((1-e*sin(phi_c))./(1+e*sin(phi_c))).^(e/2); |
114 |
|
|
m_c=cos(phi_c)./sqrt(1-e^2*(sin(phi_c)).^2); |
115 |
|
|
rho=a*m_c*t/t_c; %true scale at lat phi_c |
116 |
|
|
|
117 |
|
|
m=cos(phi)./sqrt(1-e^2*(sin(phi)).^2); |
118 |
|
|
x=pm*rho.*sin(lambda-lambda_0); |
119 |
|
|
y=-pm*rho.*cos(lambda - lambda_0); |
120 |
|
|
k=rho./(a*m); |
121 |
|
|
|
122 |
|
|
|